
Geometric Disentanglement for Generative Latent Shape Models:
Supplementary Material

Tristan Aumentado-Armstrong∗, Stavros Tsogkas, Allan Jepson, Sven Dickinson
University of Toronto Vector Institute for AI Samsung AI Center, Toronto
taumen@cs.utoronto.ca, {stavros.t,allan.jepson,s.dickinson}@samsung.com

1. Dataset Details

1.1. MNIST Dataset

As a simple dataset on which to test our method, we
generate point clouds from the greyscale MNIST images.
We first produce triangle meshes by placing vertices at each
pixel, with the x and y coordinates normalized by image
width, and the z coordinate given by 0.1 times the normal-
ized pixel value. Edges are added between each horizontal
and vertical neighbour, as well as one diagonal, thus defin-
ing 2 triangles per set of four vertex neighbours. This is es-
sentially the mesh of the height field defined by the image of
the digit. We then threshold the mesh, deleting any vertices
with a z height value less than 0.01. Finally, viewing the
mesh as a graph, we take the largest connected component,
giving us the final triangle mesh from which we sample our
point clouds. This resulted in 59483 training and 9914 test-
ing meshes with spectra. For the MNIST dataset, we fixed
NT = 2000, Nλ = 40, and NS = 1000.

1.2. MPI Dyna Dataset

The Dyna dataset [12] consists of 3D scans of 10 individ-
uals performing various sequences of simple actions (e.g.,
holding up their arms). In total, the dataset contains ap-
proximately 40K triangle meshes of multiple body types in
a large variety of poses. During training, we fixed the to-
tal number of samples to NT = 6000, the spectrum length
as Nλ = 100, and the size of the input point clouds as
NS = 2000 for the Dyna dataset.

1.3. SMAL-derived Dataset

Using the SMAL model [15], we generated a dataset of
animal meshes, including random body types and articu-
lated motions. In detail, we use the fitted multivariate Gaus-
sians computed by the authors of SMAL, which each act as

∗The work in this article was done while Tristan A.A. was a student at the Uni-
versity of Toronto. Sven Dickinson, Allan Jepson, and Stavros Tsogkas contributed
in their capacity as Professors and Postdoc at the University of Toronto, respectively.
The views expressed (or the conclusions reached) are their own and do not necessarily
represent the views of Samsung Research America, Inc.

−100 −75 −50 −25 0 25 50 75
−100

−75

−50

−25

0

25

50

75

100

Figure 1. A t-SNE plot of the LBO spectra of the human shapes in
the Dyna dataset. Each color corresponds to a different individual.
Note the natural clusters formed by individuals.

a distribution over clusters of the shape parameters of the
same animal species. We generate 3200 meshes for each
of the five categories by sampling from each cluster distri-
bution. Following the generation procedure in other works
[4], we then sample the pose (here, the joint angles) via a
Gaussian distribution with a standard deviation of 0.2. We
then split the resulting dataset into 15000 training and 1000
testing meshes (each comprised of equal numbers of meshes
per species). For SMAL, the total number of samples was
NT = 8000, the spectrum length wasNλ = 50, and the size
of the input point clouds during training was NS = 1500.

1.4. SMPL-derived Dataset

Similar to the dataset derived from SMAL, we generate
a dataset of human meshes with random body types and ar-
ticulations via the SMPL model [8]. We largely follow the
protocol from 3D-CODED [4]. Briefly, we sampled 20500
meshes from each of the male and female models using ran-
dom samples from the SURREAL dataset [14]. We aug-
mented this data with 3100 meshes of “bent” humans per

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

0.91 0.00 0.01 0.00 0.01 0.03 0.00 0.00 0.02 0.03

0.00 0.93 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01

0.00 0.00 0.57 0.04 0.09 0.17 0.07 0.05 0.01 0.01

0.00 0.00 0.20 0.33 0.03 0.34 0.04 0.04 0.02 0.00

0.00 0.00 0.07 0.02 0.80 0.03 0.00 0.03 0.00 0.04

0.00 0.01 0.18 0.03 0.02 0.62 0.03 0.10 0.01 0.01

0.00 0.00 0.11 0.01 0.00 0.02 0.58 0.02 0.02 0.23

0.00 0.01 0.08 0.03 0.07 0.08 0.04 0.67 0.00 0.02

0.02 0.00 0.08 0.01 0.02 0.00 0.08 0.00 0.77 0.02

0.01 0.00 0.03 0.00 0.03 0.01 0.11 0.01 0.01 0.79

Confusion matrix

0.0

0.2

0.4

0.6

0.8

Figure 2. Confusion matrix of a shallow classifier, mapping mesh
spectra to digit identity. Note the main confusions, e.g., between 9
and 6, match our intuition for the shape of the digit geometrically.

gender, using the alterations from Groueix et al [4]. We
then assigned 500 unbent and 100 bent meshes (per gender)
to the held-out test set, and the remaining meshes to the
training set. This resulted in 45992 meshes and 1199 test-
ing meshes after spectral calculations. Using these meshes,
we derived point clouds with NT = 8000, Nλ = 40, and
NS = 2000.

2. Spectral Geometry Intuition
In this section, we provide some intuition for the geomet-

ric meaning of the spectrum and why it can be used as a ge-
ometrically disentangled prior for shape representation, par-
ticularly for shapes that undergo isometric articulated pose
transforms.

For MNIST, an obvious question is how the intrinsic ge-
ometry of a digit’s shape captured by its LBO spectrum is
related to its semantic label (i.e., numeric value). Intuitively,
a natural notion of the shapes of the digits should be closely
related to their numeric identity, while minor perturbations
that change the style of the digits should have less of an
effect on the intrinsic shape. We examine this relation by
training a simple classifier, which learns to map from the
spectrum vector to the digit identity. We use a neural net-
work with one hidden layer (size 100), using the ReLU non-
linearity and otherwise default parameters from the scikit-
learn library [11]. This obtains an accuracy of 0.69, sug-
gesting that the intrinsic digit shape alone is capable of sig-
nificant discriminatory power, but not as much as the com-
plete shape information. The confusion matrix is shown in
Figure 2. The observed results agree with our intuition: for
instance, 9 and 6 are close to rotations of each other, while
2 and 5 also clearly have very similar intrinsic shapes; un-
surprisingly, these are relatively more common misclassifi-

cations. The most misclassified shapes, however, are 3 and
5, which differ only in the placement of the “bridge” be-
tween the lower curved part and the upper line making up
the digits.

For datasets of some objects, such as people, articula-
tions (i.e., non-rigid changes in pose for a single person)
are nearly isometric transformations. Just as one naturally
divides rigid and non-rigid deformations of objects, so too
can one separate isometries from non-isometric deforma-
tions. To illustrate, in Figure 1, a t-Distributed Stochastic
Neighbor Embedding (t-SNE) [9] plot (via scikit-learn [11])
shows the embeddings of the spectra of a portion of the
Dyna dataset (every sixth shape in each activity sequence).
Notice that the embedding naturally clusters by individual,
as the intrinsic shape of each individual’s body is largely un-
changed by the pose articulations of each action sequence.
This corresponds to an intuitive view of intrinsic shape as
being both continuous (as opposed to labelling each indi-
vidual) and, in this case, articulation invariant.

3. Architectures

All models were implemented in PyTorch [10]. For exact
values for each dataset, see Table 1.

3.1. Autoencoder Architecture

The encoder consists of a PointNet model [13], followed
by fully-connected (FC) layers. The convolutional layers
were of sizes SAE,C. There were two affine transformers
(“T-networks”) after the first and third layers, with convo-
lutional layers of size 64, 128, and 512, followed by an FC
layer with hidden size 256. After the convolutional layers
and affine transforms, 1D max pooling was applied, fol-
lowed by processing by a FC network with hidden layers
of sizes SAE,FE. The final latent representation of the AE
was of dimensionality LAE. The decoder directly generated
a fixed size point cloud (with NAE,OUT points), via a series
of FC layers with hidden layer sizes SAE,FD

We fixed the loss weighting parameters as follows:
αC = 0.75, αH = 0.5. For MNIST and Dyna, FC and
1D convolutional layers utilized a BatchNorm layer [6] and
the ReLU non-linearity between linear transforms. For
SMPL and SMAL, no normalization and layer normaliza-
tion [2] were used, respectively, in the decoder (similar to
the encoder-only usage of batch norm in prior work [1]).
Data augmentation consisted of random rotations about the
“height” axis of the models (e.g., see Figure 5), with rota-
tions in [0, 2π] for MNIST and Dyna and in [−π/6, π/6] for
SMPL and SMAL. A batch-size of SB and a learning rate
of ηAE,LR was used, with Adam [7] as the optimizer, forNEP
epochs.

MNIST Dyna SMAL SMPL

AE

SAE,C 50, 100, 200, 300, 400 50, 100, 200, 300, 400 50, 100, 200, 400, 500 50, 100, 200, 400, 500
SAE,FE 300 300 800 500
LAE 250 250 400 300
SAE,FD 300, 500, 800 300, 500, 800 800, 800, 2000 500, 800, 2000
rC , rH 10, 1 10, 1 20, 0.1 20, 0.1
NAE,OUT 1000 2000 1500 2000
SB , NEP 32, 100 32, 200 30, 500 20, 100
ηAE,LR 0.00005 0.00005 0.00025 0.00025

VAE

Sλ 500, 400 500, 400 300, 300 300, 400
SV,B 200 200 250 250
NV,EP 150 150 200 100
|zE |, |zI | 5, 5 10, 10 8, 5 12, 5
β4, γI , wJ 50, 1, 1 25, 5, 5 50, 100, 10 50, 10, 10

Table 1. Architectural parameters for the models across different datasets. See Sections 3.1 and 3.2 for details concerning the AE and VAE
parameters, respectively.

3.2. GDVAE Architecture

The encoder consists of two parts: one for the rota-
tion R and one for the shape X . Each part consists of
two sub-parts: a set of shared layers, followed by a sepa-
rate network for the variational parameters µ and Σ (i.e.,
zR ∼ N (µ(gshared,r(R)),Σ(gshared,r(R))) and (zE , zI) ∼
N (µ(gshared,x(X)),Σ(gshared,x(X)))). For the rotation map-
ping, the shared layers consisted of FC layers with hidden
sizes 300, 200, while the mean and variance mappings are
each given by a single affine transform. For theX mapping,
the shared layers consisted of FC layers with hidden sizes
1000, 750, and 500, while the mean and variance are pa-
rameterized by a FC network with one hidden layer of size
250 (MNIST/Dyna) or 300 (SMPL/SMAL).

The decoder also consisted of two parts: the rotation de-
coder (FC layers with sizes 200 and 300) and the shape de-
coder (FC layers of sizes 500, 750, and 1000). The spectral
predictor defined on the latent intrinsic zI space was an FC
network with layer sizes Sλ.

Models used a batch-size of SV,B for NV,EP epochs, us-
ing Adam with a learning rate of 0.0001. A small L2

weight decay with coefficient 5×10−6 was used for MNIST
and Dyna. Data was again augmented by random ro-
tations about the height axis, but limited to an angular
magnitude within [−π/5, π/5] for MNIST and Dyna, and
[−π/12, π/12] for SMPL and SMAL.

Concerning hyper-parameters, unless otherwise speci-
fied, we used a spectral weight of ζ = 1000, a relative
quaternionic loss weight of wQ = 10, hierarchically fac-
torized VAE loss coefficients of β1 = β2 = β3 = 1.0, and
a reconstruction loss weight of η = dim(X) (on MNIST
and Dyna), η = 200 (on SMPL), and η = 1 (on SMAL).
On SMPL, we used ζ = 500, however. Recall that the
weights on the disentanglement penalties were written β4
for the inter-group TC, γI for the inter-group covariance,

Beta-VAE Jacobian Cov TC All

β4 1 1 1 100 100
γI 0 0 100 0 100
wJ 0 100 0 0 100

Table 2. Hyper-parameter values varied in the test of various loss
weightings. (See Figure 4 for visualization of results).

and wJ for the Jacobian.

4. Rotation Disentanglement
We examine the performance of the deterministic au-

toencoder, visualizing a number of reconstructions in Fig-
ure 5. Qualitatively, the points sampled over the reconstruc-
tions are largely uniformly spread out. However, thin or
protruding areas tend to have lower densities of points, an
issue identified by other works [1].

One question is how the presence of the rotation quater-
nion affects the representation. We visualize this by “dero-
tating” the shapes (shown in the last row of each set of
shapes in Figure 5), where the R portion of their represen-
tation is set to the same value. We can see that the derotated
shapes tend to approximately fall into two or three groups
with similar orientation. To confirm this, we also sample
random shapes, rotate them, and then embed their X en-
codings via t-SNE in Figure 6. Qualitatively, we can see
that rotating the point sets does not appear to lead to a sin-
gle representation X; instead, it forms a small number of
latent groups.

We also tried adding a “rotational consistency” penalty
to the loss function, which was computed by placing an L2

loss between the X representation of pairs of shapes that
differ only by a rigid rotation (i.e., ||X − Xr||22, where X
and Xr are generated by rotations of the same point cloud).
However, this seemed to lead to higher reconstruction er-
ror and did not entirely prevent the differing representations

Figure 3. Disentangled latent interpolations for the MNIST dataset. Colours per digit denote depth. For each inset, we are interpolating
between the blue-black digits in the bottom row. The first row corresponds to only moving through zI (with zE constant), while the second
corresponds to only moving through zE (holding zI fixed). The third row traverses the full latent z space. In all cases, zR is set to zero.

Figure 4. Empirical curves of loss terms during training across weight hyper-parameters on model learning. See Table 2 for weight values.
Each colored curve represents a different set of weight values (i.e., model hyper-parameters). Top row: log-likelihood reconstruction loss,
intra-group TC, dimension-wise KL divergence. Middle row: off-diagonal intra-group covariance, on-diagonal covariance terms (i.e.,
variances), inter-group TC. Bottom row: inter-group covariance, Jacobian penalty (intrinsics with respect to extrinsics), Jacobian penalty
(extrinsics with respect to intrinsics).

forming across rotations. Furthermore, as noted in the main
text, some shapes can naturally become a “new” shape, se-

mantically speaking, due to rotation (e.g., a 9 becoming a
6), which this penalty does not allow.

Figure 5. Examples of autoencoder reconstructions across different rotations of the same object. Note that the encoding of the datum from
the AE is not passed through the VAE. Colour denotes depth (z value). Within each group of shapes, the columns show different rotations
of the left-most shape, while the top row shows input shapes (i.e., P , from the original data), the middle row shows the reconstruction P̂ ,
and the bottom row shows the derotated shape with the rotation component R set to the value given by the shape in the first column. Note
that these models were trained with data augmentations across all rotations about the gravity axis.

Figure 6. A t-SNE visualization of the rotated
shapes from the deterministic AE. Left: plot
of MNIST. Right: plot of Dyna. In both plots,
10 random shapes are selected, and rotated 40
times, evenly spread over [0, 2π], with respect
to the height axis. Each shape is then encoded
by the AE, and only the X component of its
representation is plotted. A single color corre-
sponds to a single shape.

5. MNIST Disentanglement
5.1. MNIST Latent Interpolations

Compared to that of articulating shapes (e.g., humans or
other animal), the geometric disentanglement of the latent
MNIST digit representation is less intuitive. Often, how-

ever, we found that moving in zE would tend to deform the
digit in “style”, while tranversing zI would more affect digit
scale/thickness and identity. Some examples are shown in
Figure 3. For instance, in the first inset, moving in zE sim-
ply shifts around the lines of the ‘8’ without changing its
digit identity (deforming it stylistically), while moving in

X z zE zI

SMAL Eβ 0.641 0.743 0.975 0.645
Eθ 0.938 0.983 0.983 0.993

SMAL-NJ Eβ 0.642 0.829 0.980 0.734
Eθ 0.938 0.979 0.980 0.996

SMAL-NC Eβ 0.642 0.670 0.962 0.656
Eθ 0.938 0.966 0.969 0.991

SMAL-NJC Eβ 0.642 0.661 0.834 0.891
Eθ 0.938 0.967 0.978 0.982

SMPL Eβ 0.856 0.922 0.997 0.928
Eθ 0.577 0.726 0.709 0.947

SMPL-NJ Eβ 0.858 0.907 1.006 0.895
Eθ 0.578 0.695 0.812 0.908

SMPL-NC Eβ 0.855 0.908 0.995 0.905
Eθ 0.578 0.727 0.836 0.909

SMPL-NJC Eβ 0.857 0.888 0.992 0.921
Eθ 0.578 0.693 0.722 0.965

Table 3. Different retrieval scores under various disentanglement
penalty ablation conditions. NJ, NC, and NJC mean no Jacobian,
no covariance, and neither Jacobian nor covariance cases respec-
tively. Note that differences between scores under X are due to
the random samplings of points from the shape; hence, each score
is obtained by running the process three times (across point sam-
plings). However, only the scores for SMAL and SMPL are aver-
aged over multiple training runs.

zI horizontally squishes the ‘8’ into a ‘1’.

5.2. MNIST Classification Results

We considered the information stored in the disentangled
latent space segments by examining the performance of a
classifier trained on various combinations of them, as rep-
resentations of the digits. We show the confusion matrices
for a linear SVM classifier on these sub-components of the
latent spaces in Figure 7. Notice that utilizing zR only has
the poorest performance (and that adding it to zEI has little
effect), and that the most prominent mistakes when using
only zI are very similar to those in Figure 2 (e.g., mixing
up 2, 3, 4; and 6, 9).

6. Model Analysis
6.1. Hyper-parameter Variation

Our generative model must balance three main terms:
(1) autoencoding reconstruction, (2) latent prior sampling,
and (3) disentanglement. We therefore trained five models
on MNIST under five different hyper-parameter conditions
(see Table 2) to showcase the relative effect of these loss
weights. The choice of models was designed to check how
the different penalties affected the metrics of disentangle-
ment based on each loss (e.g., how penalizing covariance
affects the pairwise Jacobian penalty), as well as autoen-
coding and generation.

Based on the results (loss curves are shown in Figure
4), we can make several observations. Firstly, a high TC
penalty results in decreased inter-group covariance and Ja-
cobian losses. However, while the covariance and Jacobian
penalties effectively reduce their own penalties, they strug-
gle to reduce the TC or each other. Nevertheless, the TC
penalty alone does not drive the covariance or Jacobian val-
ues as low as having a penalty on them directly does. This
suggests that the TC may be a more powerful penalty, but it
can still be complemented by the other approaches. One ex-
planation for this effect is that the Jacobian penalty is funda-
mentally local (penalizing the expected change with respect
to an infinitesimal perturbation around each data point sep-
arately) and the covariance penalty only reduces linear cor-
relations, whereas the TC penalty is information-theoretic
(i.e., able to detect non-linear relations) and considers the
estimated latent probability distributions on a more global
level.

On the other hand, the models with high TC show the
worst log-likelihood for reconstructions. The model with
high weights for all terms also has poor dimension-wise KL
divergence, meaning the ability to generate novel samples
may be compromised, though it is not as high as that of the
covariance-penalized model. Though our observations are
limited to this dataset, hyper-parameters, and architecture,
they suggest that the disentanglement term can be in conflict
with reconstruction and sampling (just as the latter two are
known to be in conflict with each other; e.g., [5]).

6.2. Disentanglement Penalty Ablation

To further examine the effect of the disentanglement
penalties, in particular the covariance and Jacobian terms,
we considered two ablation experiments on the SMPL and
SMAL datasets: (1) looking at the loss curves of the esti-
mated entanglement measures during training and (2) con-
sidering the pose-aware retrieval performance. We ex-
amined three conditions, in addition to the regular hyper-
parameter values (REG): no Jacobian penalty (NJ), no co-
variance penalty (NC), and no Jacobian or covariance penal-
ties (NJC).

The various loss terms are shown over training epochs
in Figures 8 and 9, for SMAL and SMPL respectively. On
SMAL, we see that REG and NJ have worse KL-divergence
and reconstruction loss, but better inter-group TC and co-
variance. NJC scores the worst on all four entanglement
measures, except ∂µ̂I/∂µE (where surprisingly NJ holds
the smallest value). On SMPL, we see that NJ consistently
has the highest Jacobian penalties, and that REG and NJ
have the worst TC. On both datasets, we see that the covari-
ance penalty is necessary to ensure the inter-group covari-
ance is small, since NC and NJC always have much higher
inter-group covariance than NJ and REG.

We next considered the pose-aware retrieval task under

Figure 7. Confusion matrices for a linear SVM classifier accuracy on the MNIST test set. Top row: testing with zR, zE , zI . Middle row:
testing with zRE , zRI , zEI . Bottom row: testing with, zREI , (R,X).

the various ablation conditions. Results are shown in Table
3. Recall that low Eθ using zE and low Eβ using zI are
good (indicating zI and zE hold intrinsic shape and pose
respectively), while low Eθ using zI and low Eβ using zE
are not (as it means entanglement is present). For SMAL,
we see that REG has the best Eβ using zI , while NJC is
worse than both NJ and NC. We can also see poor entangle-
ment in the low Eβ using zE of NJC. The scores for Eθ are
poor across all the representations, even including X . NC
has the best Eθ using zE , but it has a worse (i.e., lower) Eβ
using zE , suggesting increased entanglement. For SMPL,
REG has the best Eθ using zE , but NC and NJ have better
Eβ values with zI . However, NC and NJ also have lower
Eθ with zI , meaning pose is entangled with intrinsic shape.
It’s also worth noting that NJC on both SMAL and SMPL
has lower error on both Eβ and Eθ when using z. This
suggests that the increased disentanglement penalties make

holding information harder in general (i.e., allowing more
entanglement can increase reconstruction and thus retrieval
performance).

7. Pose-Aware Retrieval Variance
In Table 4, we consider the standard error of the mean

(SEM) for the retrieval experiments. Each model was
trained three times with the same hyper-parameters (to ac-
count for training stochasticity), and then each model was
run three times to account for randomness in the point set
sampling of the input shapes. We show the SEM across
models (i.e., trainings) after averaging over point samplings
per model. Since each model has its own SEM over sam-
plings, we display the maximum SEM across models. No-
tice that all SEMs are less than 0.01, except for two (over
model trainings): the Eβ when using z and zI on SMAL,
which are the most unstable retrieval performances. In gen-

Figure 8. Empirical curves of loss terms for disentanglement ablations on SMAL. NC, NJ, and NJC mean no covariance, no Jacobian,
or neither penalties, respectively. Each colored curve represents a different set of weight values (i.e., model hyper-parameters). Top row:
log-likelihood reconstruction loss, intra-group TC, dimension-wise KL divergence. Middle row: off-diagonal intra-group covariance, on-
diagonal covariance terms (i.e., variances), inter-group TC. Bottom row: inter-group covariance, Jacobian penalty (intrinsics with respect
to extrinsics), Jacobian penalty (extrinsics with respect to intrinsics).

X z zE zI
SMAL Eβ 0.0006 0.0282 0.0035 0.0381

(M-SEM) Eθ 0.0003 0.0015 0.0015 0.0015
SMPL Eβ 0.0003 0.0048 0.0015 0.0032

(M-SEM) Eθ 0.0003 0.0032 0.0058 0.0059
SMAL Eβ 0.0028 0.0020 0.0030 0.0024

(S-SEM) Eθ 0.0008 0.0005 0.0006 0.0008
SMPL Eβ 0.0015 0.0013 0.0020 0.0053

(S-SEM) Eθ 0.0008 0.0017 0.0022 0.0070
Table 4. SEMs across model training runs (M-SEM) and shape
samplings (S-SEM). Model training SEMs are computed over the
mean of the shape sampling runs; shape sampling SEMs are com-
puted by taking the SEM over point samplings per model, and then
the maximum SEM across models.

eral, training instability is a useful consideration for future
work.

8. Pose-Aware Retrieval with Spectral Noise

We also investigated the effect of spectral noise on model
performance. We considered three forms of noise: (1) by di-
rectly injecting Gaussian multiplicative noise into the spec-
tra, (2) replacing the spectrum with Gaussian noise (mean
zero, sigma 50), and (3) by extracting the LBO from sam-
pled point clouds (rather than meshes). To add the noise
in (1), we multiply each eigenvalue with independent noise
ξ ∼ N (1, σ2), and then enforced non-negativity (via clip-
ping) and monotonicity of the spectrum (by re-sorting the
spectrum). To obtain the spectra in (3), we used a simple
Laplacian computed from an affinity matrix, via a radial
basis function kernel on the inter-point L2 distance, with
bandwidth chosen as bσ = d

−1/(2+ξ)
N /4, where dN is the

mean distance of each point to its nearest neighbour and
ξ = 0.01 (similar to [3]).

Figure 9. Empirical curves of loss terms for disentanglement ablations on SMPL. See Table 2 for weight values. NC, NJ, and NJC mean
no covariance, no Jacobian, or neither penalties, respectively. Top row: log-likelihood reconstruction loss, intra-group TC, dimension-wise
KL divergence. Middle row: off-diagonal intra-group covariance, on-diagonal covariance terms (i.e., variances), inter-group TC. Bottom
row: inter-group covariance, Jacobian penalty (intrinsics with respect to extrinsics), Jacobian penalty (extrinsics with respect to intrinsics).

We note that the shapes (input point clouds) themselves
do not have any additional noise (compared to the standard
experimental setup), only the spectra do. Thus, poorer per-
formance may manifest itself as increased retrieval accuracy
with the wrong latent space segment (e.g., lower Eβ when
retrieving with zE).

Results are shown in Table 5. However, we find that the
network can tolerate moderate spectral noise, with decreas-
ing performance as noise increases. For instance, one can
see Eβ with zI on SMAL and Eθ with zE on SMPL de-
grade as σ increases. Very extreme noise, as when replacing
the spectrum with Gaussian random values (“SMAL-R” and
“SMPL-R” in Table 5), destroys the disentanglement, as the
network no longer has access to the isolated intrinsics. This
is similar to ablating the spectral loss, except that predicting
the random spectrum adds additional burden on zI . Finally,
for the spectra extracted from the point cloud Laplacians,
the network degrades slightly on SMPL, compared to using

the mesh LBO, but much more so on SMAL.
In practice, we note that our method does not require

spectra at test time (for inference or novel sample genera-
tion). However, it will be affected by noise in the training
data (whether in the meshes, spectra, or point clouds). One
approach to improve generalization to noisy point clouds at
test time is to use additional noise for data augmentation
while training.

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative
models for 3d point clouds. 2018. 2, 3

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 2

[3] Mikhail Belkin, Jian Sun, and Yusu Wang. Constructing
laplace operator from point clouds in Rd. In Proceedings

X z zE zI
SMAL Eβ 0.641 0.724 0.961 0.666
σ = 0.05 Eθ 0.937 0.969 0.980 0.981
SMAL Eβ 0.641 0.723 0.900 0.868
σ = 0.1 Eθ 0.938 0.969 0.979 0.994
SMAL Eβ 0.636 0.810 0.893 0.838
σ = 0.2 Eθ 0.938 0.979 0.988 0.996

SMAL-R Eβ 0.643 0.822 0.791 0.913
Eθ 0.938 0.977 0.985 0.998

SMAL-P Eβ 0.639 0.629 0.783 0.929
np = 1.2K Eθ 0.939 0.973 0.973 0.995
SMAL-P Eβ 0.641 0.698 0.636 0.895
np = 2K Eθ 0.938 0.980 0.984 0.993

SMPL Eβ 0.857 0.910 1.000 0.913
σ = 0.05 Eθ 0.578 0.735 0.774 0.966

SMPL Eβ 0.856 0.909 0.979 0.929
σ = 0.1 Eθ 0.578 0.694 0.720 0.979
SMPL Eβ 0.858 0.919 0.980 0.925
σ = 0.2 Eθ 0.578 0.710 0.810 0.946

SMPL-R Eβ 0.857 0.933 0.924 0.987
Eθ 0.579 0.694 0.826 0.943

SMPL-P Eβ 0.856 0.946 0.972 0.948
np = 1.2K Eθ 0.577 0.673 0.731 0.954
SMPL-P Eβ 0.856 0.926 0.990 0.944
np = 2K Eθ 0.578 0.695 0.739 0.982

Table 5. Retrieval results in the presence of spectral noise. Each
row corresponds to retrieval results in the presence of spectral
noise either due to multiplicative Gaussian noise (with strength
σ), replacing the spectrum with independent Gaussian noise (mean
zero, sigma 50; denoted “-R”), or using an LBO estimated from a
point cloud (denoted “-P”, using a point cloud of size np, either
1200 or 2000).

of the twentieth annual ACM-SIAM symposium on Discrete
algorithms, pages 1031–1040. Society for Industrial and Ap-
plied Mathematics, 2009. 8

[4] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. 3d-coded: 3d cor-
respondences by deep deformation. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
230–246, 2018. 1, 2

[5] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,
Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and
Alexander Lerchner. β-vae: Learning basic visual concepts
with a constrained variational framework. In International
Conference on Learning Representations, 2017. 6

[6] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015. 2

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2

[8] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-
ard Pons-Moll, and Michael J. Black. SMPL: A skinned

multi-person linear model. ACM Trans. Graphics (Proc.
SIGGRAPH Asia), 34(6):248:1–248:16, Oct. 2015. 1

[9] Laurens van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(Nov):2579–2605, 2008. 2

[10] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 2

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011. 2

[12] Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and
Michael J. Black. Dyna: A model of dynamic human shape
in motion. ACM Transactions on Graphics, (Proc. SIG-
GRAPH), 34(4):120:1–120:14, Aug. 2015. 1

[13] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classifica-
tion and segmentation. Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE, 1(2):4, 2017. 2

[14] Gül Varol, Javier Romero, Xavier Martin, Naureen Mah-
mood, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning from synthetic humans. In CVPR, 2017. 1

[15] Silvia Zuffi, Angjoo Kanazawa, David Jacobs, and
Michael J. Black. 3D menagerie: Modeling the 3D shape
and pose of animals. In IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), July 2017. 1

