A. Online Benchmark

In this supplemental document, we provide additional results, including measurements on the hidden test set of the Scan2CAD benchmark [1]. Specifically, we provide a quantitative comparison in Tab. 1, which was submitted to official benchmark website on March 29th, 2019. In addition, we show qualitative results of our approach in Fig. 1.

B. SUNCG

We conduct experiments on the SUNCG dataset [6] to verify the effectiveness of our method. For training and evaluation, we create virtual scans of the synthetic scenes, where we simulate a large-scale indoor 3D reconstruction by using rendered depth frames similar to [3, 2] with the distinction that we add noise to the synthetic depth frames in the fusion process. The voxel resolution for the generated SDF grids is at 4.68 cm. The ground truth models are provided by the SUNCG scenes, where we discard any objects that have not been seen during the virtual scanning (no occupancy in the scanned SDF). We show a quantitative evaluation in Tab. 2, where we outperform the current state-of-the-art method Scan2CAD [1] by a significant margin. We show that our method can align CAD models robustly through all classes. Additionally, we see that our Procrustes loss notably improves overall alignment accuracy. In particular, for less frequent CAD models (e.g., those summarized in other), we observe a considerable improvement in alignment accuracy.

Fig. 2 shows qualitative results on scanned SUNCG scenes. Our end-to-end approach is able to handle large indoor scenes with complex furniture arrangements.

References


Table 1: Performance comparison (%) on the hidden test set of the Scan2CAD alignment benchmark [1]. We outperform existing methods by a significant margin on all classes; the last two rows provide class and average instance alignment accuracy, respectively.

Table 2: CAD alignment accuracy comparison (%) on SUNCG [6]. We compare to state-of-the-art handcrafted feature descriptors FPFH [5], SHOT [7] as well as a learning based method Scan2CAD [1] for CAD model alignment. Note that the Procrustes loss considerably improves overall alignment accuracy.

Figure 1: Qualitative results on the Scan2CAD alignment benchmark [1] (submitted to official benchmark website on March 29th, 2019)
Figure 2: Qualitative results on virtual scans from SUNCG. Note that our method handles complex CAD arrangements better than Scan2CAD.