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A. Online Benchmark
In this supplemental document, we provide additional re-

sults, including measurements on the hidden test set of the
Scan2CAD benchmark [1]. Specifically, we provide a quan-
titative comparison in Tab. 1, which was submitted to offi-
cial benchmark website on March 29th, 2019. In addition,
we show qualitative results of our approach in Fig. 1.

B. SUNCG
We conduct experiments on the SUNCG dataset [6] to

verify the effectiveness of our method. For training and
evaluation, we create virtual scans of the synthetic scenes,
where we simulate a large-scale indoor 3D reconstruction
by using rendered depth frames similar to [3, 2] with the
distinction that we add noise to the synthetic depth frames
in the fusion process. The voxel resolution for the gener-
ated SDF grids is at 4.68cm. The ground truth models are
provided by the SUNCG scenes, where we discard any ob-
jects that have not been seen during the virtual scanning
(no occupancy in the scanned SDF). We show a quantitative
evaluation in Tab. 2, where we outperform the current state-
of-the-art method Scan2CAD [1] by a significant margin.
We show that our method can align CAD models robustly
through all classes. Additionally, we see that our Procrustes
loss notably improves overall alignment accuracy. In partic-
ular, for less frequent CAD models (e.g., those summarized
in other), we observe a considerable improvement in align-
ment accuracy.

Fig. 2 shows qualitative results on scanned SUNCG
scenes. Our end-to-end approach is able to handle large
indoor scenes with complex furniture arrangements.
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bath bookshelf cabinet chair display sofa table trash bin other class avg. avg.
SHOT (Tombari et al. [7]) 0 1.8 0 8.8 0.0 1.2 0 0 2.2 1.5 2.8
FPFH (Rusu et al. [5]) 0 0 1.5 10.7 0 1.2 2.1 2.9 0 2.0 3.7
Li et al. [4] 0 1.8 2.3 1.11 0 2.8 6.4 2.7 0 3.0 4.6
3DMatch (Zeng et al. [8]) 0 5.3 3.8 19.5 1.7 5.2 17.0 6.0 6.5 7.2 9.2
Scan2CAD (Avetisyan et al. [1]) 25.0 28.1 30.8 39.7 20.3 14.3 51.1 31.5 19.6 28.9 28.8
Ours 40.6 38.6 36.2 68.1 25.4 27.0 63.8 38.0 40.2 42.0 44.1

Table 1: Performance comparison (%) on the hidden test set of the Scan2CAD alignment benchmark [1]. We outperform
existing methods by a significant margin on all classes; the last two rows provide class and average instance alignment
accuracy, respectively.

Figure 1: Qualitative results on the Scan2CAD alignment benchmark [1] (submitted to official benchmark website on March
29th, 2019)

bed cabinet chair desk dresser other shelves sofa table class avg. avg.
SHOT (Tombari et al. [7]) 13.43 3.23 10.18 2.78 0 0 1.75 3.61 11.93 5.21 6.3
FPFH (Rusu et al. [5]) 38.81 3.23 7.64 11.11 3.85 13.21 0 21.69 11.93 12.39 9.94
Scan2CAD (Avetisyan et al. [1]) 52.24 17.97 36 30.56 3.85 20.75 7.89 40.96 43.12 28.15 29.23
Ours (No Procrustes) 71.64 29.95 39.27 23.61 30.77 20.75 9.65 69.88 40.37 37.32 36.42
Ours (final) 71.64 32.72 48.73 27.78 38.46 37.74 14.04 67.47 45.87 42.72 41.83

Table 2: CAD alignment accuracy comparison (%) on SUNCG [6]. We compare to state-of-the-art handcrafted feature
descriptors FPFH [5], SHOT [7] as well as a learning based method Scan2CAD [1] for CAD model alignment. Note that the
Procrustes loss considerably improves overall alignment accuracy.



Figure 2: Qualitative results on virtual scans from SUNCG. Note that our method handles complex CAD arrangements better
than Scan2CAD.


