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1. Annotation techniques

Several annotators worked on the creation of the ground
truth, each focusing on a separate set of classes. To ensure
annotation consistency, a list of rules was established and
extended as special cases were discovered. These guide-
lines relate to two aspects of the annotation work: target
identification and boundary topology. For the former, the
annotators referred to the comprehensive class definitions
found in section 2 to assign every object in the image to a
semantic category. The vertical ordering of classes (or class
overlays) was based on the natural physical ordering found
in the real world, and as also considered in transportation
systems, i.e., vehicles were put on top of all road-like ob-
jects, etc. Some classes were annotated together to ensure
that inter-object borders were not overlapping, but only after
fixing the vertical class order, similarly to CityScapes [2]:
the object boundaries of low-level classes were drawn more
coarsely at places where they would be overlaid with the
accurate masks of higher-level classes. This sped up the
annotation process while still satisfying our quality require-
ments. Other objects such as vehicles were annotated sep-
arately. As a consequence, their borders did not necessar-
ily match the boundaries of other classes in the resulting
merged ground truth. In the final verification step, these
seams were corrected pixel by pixel by the annotators.

2. Semantic classes

In table 10, we provide detailed definitions of the 31 an-
notated classes, including a typical visual example per class.

3. Further details on SkyScapesNet

In SkyScapesNet, we use the same number of pooling
and unpooling steps as in the FC-DenseNet [3] baseline,
i.e., 5pooling and 5 unpooling steps. Between the encoder
and decoder we use an extra fully dense block (FDB) mod-
ule similar to the DenseBlock (DB) module in the baseline
together with concatenated reverse ASPP (CRASPP). The

Table 1. Architecture details of SkyScapesNet. The abbreviations
stand for: FDB: Fully DenseBlock, DoS: Down-sampling, UpS:
Up-sampling, SL: separable layer, and fm: number of feature
maps. Note that skip-connections and LKBR modules have not
been illustrated for simplicity.
Network Architecture
Input, fm=3
Convolution (3x3), fm:48
FDB (4 SLs), MaxPool—-FRSR
Concatenation—DoS—Concatenation
FDB (5 SLs), Conv(3x3) + MaxPool—-FRSR
Concatenation—DoS—Concatenation
FDB (7 SLs), Conv(3x3) + MaxPool -FRSR
Concatenation—DoS—Concatenation
FDB (10 SLs), Conv(3x3) + MaxPool—FRSR
Concatenation—DoS—Concatenation
FDB (12 SLs), Conv(3x3) + MaxPool—-FRSR
Concatenation—DoS—Concatenation
FDB (15 SLs)
CRASPP
repeated in parallel for each task
UpS + FDB (12 SLs)
UpS + FDB (10 SLs)
UpS + FDB (7 SLs)
UpS + FDB (5 SLs)
UpS + FDB (4 SLs)
Convolution (1x1), fm=No. of classes
Softmax

number of Separable Layers (SL) is similar to the baseline:
4,5,7,10, 12, 15,12, 10, 7, 5, 4. However, for the majority
of the ablation studies we used the SL sequence 1, 2, 3, 4,
5,6,5,4,3,2, 1 due to limited GPU memory in Titan XPs.
The experiments marked with “*’ in the ablation study table
were carried out with the same number of SL modules as in
the baseline.

We use HeUniform to initialize our model and train it
with ADAM using a constant learning rate of 0.0001. We


https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12760

did not use any learning rate scheduler for the sake of fair
benchmarking of several architectures. We train all mod-
els on the augmented data with horizontal and vertical flips.
We use current batch statistics for batch normalization in
all three phases: training, validation, and test. The number
of features in SL modules is the multiplication of the num-
ber of SL modules and the growth-rate. We used the same
growth-rate of 16 as the baseline. The number of feature
maps in separable-convolutions is the same as in the stan-
dard convolution layers. We use a stride of 1 in separable
convolutions. MaxPooling is done with a kernel size of 2x 2
with a stride of 2. For convolutions, we use a kernel size of
3 x 3 throughout the network. In the full-resolution sepa-
rable residual (FRSR) module, the number of feature maps
in the first convolution and in the separable convolution is
twice as many as the number of feature maps in FDB at the
same step. The last convolution has equal number of feature
maps as the corresponding FDB.

The input convolution of the FRSR modules (except the
first one) is 1 x 1 and the number of feature maps is equal
to growth rate x number of SL modules. We use 21
feature maps in the large-kernels with boundary refinements
(LKBRs) modules.

In our experiments, we combine the Soft-IoU loss [4]
as well as the Soft-Dice loss [5] with the cross-entropy
loss function. For the multi-class segmentation task, cross-
entropy is defined as

C ~
Lcross—entropy = _% Zczl ZN Yne 10g Yne (D

where y,. € {0,19} is the ground-truth value for class ¢
at location n, g,. € [0, 19] is the prediction probability, C
stands for the total number of classes, [V is the total number
of pixel locations and L stands for the loss function. The
Soft-IoU loss is computed as:

o 1 C ZN Ync*Yne
Lsoft—IOU - _6 Zc:l ZN ync+gnc_ync*@nc (2)

The total loss is then defined as

Ltotal = Lsoft—IOU + Lcross—entropy (3)
When the Soft-Dice loss is used, we compute the follow-
ing:

_i C 2*' ZN ync*gncl
C Zc:l |ZN yncP""lZN ync|2 (4)

Lsoft—Dice =

In table 2, we evaluate the above losses on SkyScapes-
Dense, both separately and in combination, and show that
the combination of soft-IoU loss with cross-entropy is more
beneficial than soft-Dice with cross-entropy.

4. Class merging policy for the Potsdam and
GRSS_DFC_2018 datasets

In order to be able to evaluate the performance of
our method trained on SkyScapes on the Potsdam and

Table 2. Evaluation of the different losses and their combinations
on the SkyScapes-Dense benchmark. mloU numbers are in [%)].

Higher value is better. SSNet stands for SkyScapesNet.
Network | cross-entropy | soft-IoU | soft-Dice | mloU [%] |

Baseline [3] v 36.88
SSNet v 36.95
SSNet v 36.93
SSNet v v 37.08
SSNet v v 37.01

Table 3. The class merging policy we used to make the results of
our model comparable with the ground-truth labels in Potsdam.

SkyScapes-Dense Potsdam
low-vegetation low-vegetation
paved-road impervious-surface
non-paved-road impervious-surface
paved-parking-place impervious-surface
non paved-parking-place | impervious-surface

bikeways impervious-surface
sidewalks impervious-surface
entrance-exit impervious-surface
danger-area impervious-surface

lane-markings
danger-area

impervious-surface
impervious-surface

car vehicle
trailer clutter
van vehicle
truck vehicle
large-truck vehicle
bus vehicle
clutter clutter
impervious-surface impervious-surface

tree tree

GRSS_DFC_2018 datasets with different class defini-
tions, we adopt the class merging policy shown in ta-
ble 3 on the SkyScapes-Dense prediction task. For the
GRSS_DFC_2018 dataset, we applied a similar policy.

S. Further quantitative results

In table 4, we present an extensive benchmark on
SkyScapes-Dense using several different methods ranging
from the initial FCNS, as the first semantic segmentation
method that uses fully convolutional neural networks, to
the very recent Dense ASPP, BiSeNet, and DeepLabv3+ al-
gorithms. Table 5 shows the IoU,4ss, i.e., the IoU for
each of the 20 classes separately. Similarly, table 6 and ta-
ble 7 show the benchmark results on SkyScapes-Lane (over-
all and for each class separately). Finally, results for the
merged dense classes (the SkyScapes-Dense-Category task)
are given in table 8 and table 9.



Table 4. Benchmark of the state-of-the-art methods on the SkyScapes-Dense dataset considering the performance over all 20 classes as a
whole. ‘-> means no specific backbone network is used. ‘IoU’ and ‘f.w.” represent intersection over union and frequency weighted IoU.

Models: best and second best.

method base pixel IoU [%] average [%)]
scheme modularities  accuracy [%] mean f.w.  recall precision
FCN-8s VGG19 76.95 32.11 6345 40.73 50.63
FCN-8s ResNet50 79.19 33.06 67.02 40.78 65.01
Dilation - 72.41 25.65 58.65 3449 38.48
SegNet - 74.24 23.14 6132 29.21 59.56
U-Net - 52.74 14.15 36.33 21.88 22.87
AdapNet - 74.52 30.23 61.09 38.38 47.73
BiSeNet ResNet50 73.25 30.82  59.62 40.25 49.42
BiSeNet ResNet101 74.62 2998 61.27 39.21 46.44
BiSeNet ResNet152 75.41 29.84 62.17 39.30 45.08
DeepLabv3 Res50 68.43 2336 53.60 30.76 43.98
DeepLabv3 Res101 71.32 2530 57.30 33.29 41.92
DeepLabv3 Res152 70.27 26.38 56.11 34.39 46.84
DeepLabv3 InceptionV4 26.58 244 11.38 5.61 28.83
DenseASPP MobileNetV2 19.67 2.17  9.01 4.86 19.57
DenseASPP ResNet50 70.96 24770 56.60 32.35 39.46
Dense ASPP ResNet101 71.27 2473  56.58 32.21 40.82
Dense ASPP ResNet152 67.67 2453 5258 3249 40.11
Encoder-Decoder - 77.83 30.35 65.65 3991 43.28
Encoder-Decoder-Skip - 79.08 37.16 67.18 48.26 50.16
FC-DenseNet-56 - 77.28 3322 64.86 4292 46.98
FC-DenseNet-67 - 78.45 34.67 6626 44.38 47.71
FC-DenseNet-103 - 79.21 3778 67.44 46.66 53.89
FRRNA - 77.59 3720 65.10 4644 53.22
FRRNB - 76.78 3249 64.10 40.85 49.07
GCN Res50 77.88 32.88 65.82 43.26 46.99
GCN Res101 77.57 32.80 6555 42.14 48.06
GCN Res152 77.50 3292 65.12 41.60 49.65
Mobile-U-Net - 75.25 26.01 6235 34.01 39.70
Mobile-U-Net-Skip - 77.56 3496 6526 44.52 49.49
PSPNet Res50 74.49 30.31 6145 40.02 4451
PSPNet Res101 74.62 30.44 61.62 40.48 43.63
PSPNet Res152 74.09 30.20 60.95 39.76 4391
RefineNet Res50 77.02 3423 64.68 44.15 49.54
RefineNet Res101 77.08 33.27 64.66 42.23 48.46
RefineNet Res152 77.75 36.39 6552 46.12 52.17
DeepLabv3+ Res50 75.88 31.95 63.00 40.20 49.76
DeepLabv3+ Res101 75.94 3195 6325 41.48 48.61
DeepLabv3+ Res152 76.14 3191 6329 4248 46.85
DeepLabv3+ Xception65 80.25 38.20 68.81 47.97 55.34
SkyScapesNet - 83.56 40.13  72.67 47.85 65.93

6. Further qualitative results

We also provide more qualitative results to demonstrate
the generalization capability of our method. Figure 1 shows
the satellite image of the whole area of Munich, Germany.
This image was taken by the WorldView4 satellite with a
ground sampling distance (GSD) of 30 cm.

The patches in fig. 2 highlight binary lane-marking seg-

mentation results on the satellite image, the feasibility of
which is, to our knowledge, demonstrated here for the first
time. In this work, we expanded the work of Azimi et al. [1]
on binary lane-marking extraction. It is thus feasible to ex-
tract whole-city lane-marking maps from a single satellite
image.

Figure 3, fig. 4, and fig. 5 show further qualitative re-



Table 5. Evaluation of the state-of-the-art methods on the SkyScapes-Dense dataset for each class separately. ‘-> means no specific back-
bone network is used. ‘IoU’ represents intersection over union. LV, PR, nPR, PPC, nPPC, BW, SW, EE, DA, LM, B, Ca, TR, V, TK, LT, Bu,
CL, IS, and T represent low-vegetation, paved-road, non-paved-road, paved-parking-place, non-paved-parking-place, bikeway, sidewalk,
entrance-exit, danger area, lane-marking, building, car, trailer, van, truck, long truck, bus, clutter, impervious surface, and tree. Models:
best and second best.

method base IoU %]
mean LV PR nPR PPC nPPC BW SW EE DA LM B C TR \ TK LT Bu Cl IN T

FCN-8s VGG19 3211 67.11 63.74 6.82 29.11 0.12 259 32.64 7.14 4399 3646 812 64.09 0.08 3267 7.86 0.0 201 5047 17.24 73.53
FCN-8s ResNet50  33.06 6845 67.71 6.41 3471 0.0 3208 40.72 17.8 36.53 831 86.7 67.88 0.0 29.87 865 527 0.0 50.64 2375 75.65
Dilation - 25.65 58.11 58.84 1.78 2574 0.02 19.74 31.87 17.15 0.0 1.49 8055 475 0.0 21.87 151 4.62 121 40.24 19.64 6748
SegNet - 23.14 6396 619 094 275 119 7.7 3065 072 0.0 499 8192 4394 0.0 0.0 00 00 00 4473 21.7 7086
U-Net - 14.15 46.68 37.17 1.6 14.89 007 007 881 0.0 0.0 37.66 49.63 23.0 044 234 091 0.11 0.0 1584 683 36.87
AdapNet - 3023 59.99 6528 1.49 274 0.19 287 36.86 19.08 34.08 21.49 80.74 54.7 3.07 26.04 11.5 092 114 3127 1995 705
BiSeNet ResNet50  30.82 59.68 6543 2.14 2525 095 259 385 152 47.01 2293 8276 609 3.99 31.34 12.85 0.71 842 2726 2207 63.0
BiSeNet ResNet101 2998 61.55 6539 0.62 21.99 052 2439 37.71 13.12 2359 20.62 82.7 63.84 4.07 32.16 175 068 2.7 3452 2385 68.13
BiSeNet ResNet152  29.84 63.02 65.87 1.99 255 0.05 274 3877 17.65 858 19.93 84.19 62.79 1.74 32.81 1557 0.01 10.03 28.79 24.13 67.89
DeepLabv3 Res50 2336 57.12 5525 1.7 20.86 0.64 14.41 277 1049 349 427 7517 5243 124 2514 7.07 0.0 824 2628 18.56 57.06
DeepLabv3 Res101 2530 59.69 57.28 0.85 2239 0.31 14.24 2928 985 9.43 691 78.65 53.57 025 26.66 643 1.63 14.73 30.02 19.14 64.61
DeepLabv3 Res152 2638 56.96 602 2.86 20.61 042 17.76 31.76 10.55 19.21 8.85 80.38 56.38 143 27.78 8.77 647 7.57 29.7 20.75 59.15
DeepLabv3 InceptionV4 244 513 00 00 00 00 00 00 00 00 00 1972 00 00 00 00 00 00 00 00 2393
DenseASPP MobileNetV2 2.17 17.64 006 0.21 1.11 019 0.0 1.03 0.04 0.0 00 1395 00 00 009 00 00 00 073 108 735
DenseASPP ResNet50  24.70 58.19 60.79 1.44 2331 0.06 16.88 31.85 11.96 02 20.65 76.57 573 044 194 532 00 198 2422 21.18 6223
DenseASPP ResNet101  24.73 59.05 60.85 1.47 23.07 0.09 1692 31.51 12.85 456 1896 76.59 56.12 0.55 17.84 4.81 0.01 892 1822 2028 61.87
DenseASPP ResNet152  24.53 51.53 59.83 2.47 2274 0.04 19.55 31.92 11.66 2.64 2244 7794 56.86 0.66 18.32 9.84 096 227 27.92 18.96 52.08
Encoder-Decoder - 3035 67.6 65.69 228 31.27 0.05 30.7 40.71 19.72 0.5 23.87 84.59 55.64 0.75 20.72 1584 2.67 83 3455 26.44 75.02
Encoder-Decoder-Skip - 37.16 6748 69.7 3.68 33.54 0.37 36.83 42.88 23.14 33.77 65.13 86.47 69.86 1.09 33.33 22.81 3.27 447 443 2587 75.26
FC-DenseNet-56 - 3322 66.47 6547 1.74 29.89 0.34 26.26 3825 17.01 2648 61.56 83.99 63.51 0.13 2495 11.07 031 11.37 39.21 21.88 74.54
FC-DenseNet-67 - 3467 684 66.71 2.28 29.84 0.06 30.78 41.28 18.14 25.15 64.93 84.65 66.33 0.42 29.04 18.87 1.12 0.01 4553 24.24 7552
FC-DenseNet-103 - 37.78 69.18 68.19 0.79 334 0.01 3197 42.67 20.28 56.5 66.69 85.53 66.94 121 31.81 20.51 3.61 4.26 49.84 2588 76.42
FRRN-A - 3720 61.59 67.23 3.61 19.17 0.7 3228 38.65 11.53 855 6345 83.28 68.83 1.99 3292 20.74 4.03 7.74 3739 23.66 64.66
FRRN-B - 3249 6553 67.04 1.62 27.86 0.0 31.94 39.27 18.82 1538 61.62 824 623 195 2628 11.05 1.61 13.01 24.03 2492 73.09
GCN Res50 32.88 67.28 67.24 1.08 31.87 0.08 22.75 38.84 14.16 20.32 5547 85.12 66.68 0.1 29.67 1325 0.18 6.23 37.04 2559 74.75
GCN Res101 32.80 66.95 6647 497 2536 0.52 24.43 40.04 17.04 18.48 5298 8585 67.39 2.1 3041 1324 2.07 241 3425 2626 74.77
GCN Res152 3292 66.44 64.86 2.27 2581 0.0 2821 3948 164 19.67 5441 8538 66.72 239 30.8 8.63 087 4.16 4228 25.19 744
Mobile-U-Net - 26.01 643 63.87 293 2731 0.37 2336 36.18 1884 0.0 568 80.98 439 0.04 1567 155 098 648 18.11 22.61 73.02
Mobile-U-Net-Skip - 3496 6649 6749 25 3094 05 2626 3846 1995 38.01 62.15 845 6475 3.67 31.05 15.67 041 104 37.88 24.06 74.01
PSPNet Res50 3031 64.11 60.03 1.01 21.88 091 17.46 31.74 10.6 16.83 50.08 80.36 63.94 1.68 28.76 18.09 129 7.65 36.66 20.74 72.34
PSPNet Res101 3044 642 59.72 0.79 22.61 028 19.53 3242 10.52 31.29 50.22 80.53 62.78 0.8 27.48 1542 3.09 0.04 34.09 20.13 72.81
PSPNet Res152 30.20 64.04 57.95 3.75 22.14 0.79 1991 31.45 10.62 27.78 51.29 79.96 6345 0.95 27.87 1323 035 4.0 31.49 2147 71.53
RefineNet Res50 3423 66.78 63.34 3.58 29.77 0.07 26.41 36.11 14.97 3231 4148 83.62 69.29 2.07 37.82 1591 243 13.61 4632 24.59 74.12
RefineNet Res101 33.27 66.19 64.63 4.28 2991 0.21 28.68 356 143 1741 4192 84.08 69.41 0.57 38.12 17.31 3.02 721 44.08 2479 73.72
RefineNet Res152 3639 67.05 6541 3.26 32.83 03 32.19 38.08 17.19 56.6 44.79 84.23 69.06 2.39 37.4 16.77 3.45 1585 4231 23.86 74.75
DeepLabv3+ Res50 3195 6436 63.69 2.68 29.05 0.56 2532 35.69 15.12 31.4 4254 8197 6527 122 31.69 1397 44 178 3482 21.02 72.56
DeepLabv3+ Res101 3195 64.61 63.7 1.58 295 059 2385 3522 1534 27.76 413 8225 65.01 293 29.81 11.07 0.0 13.58 3538 22.73 72.83
DeepLabv3+ Res152 3191 64.78 63.88 2.42 27.86 0.23 24.8 36.55 1422 17.19 4527 83.0 66.59 2.37 3324 1628 2.74 4.87 3698 23.04 71.97
DeepLabv3+ Xception65 3820 69.92 69.79 2.62 34.85 0.67 28.72 43.98 25.84 46.43 46.73 88.12 70.73 2.44 39.25 1599 5.33 16.64 5038 2845 77.16
SkyScapesNet - 40.13 72.33 78.48 5.86 52.04 4.13 51.39 529 27.24 433 65.26 89.16 72.01 1.03 3833 1933 0.0 0.0 56.02 3539 77.41

sults on three aerial images with different scales, GSD, il-
lumination conditions, and from different geographical ar-
eas. These figures show the whole-image dense prediction
and zoomed-in sample areas with dense, multi-class lane-

marking, and multi-class edge segmentations.



Table 6. Benchmark of the state-of-the-art methods on the SkyScapes-Lane dataset considering the performance over all 13 classes as a
whole. ‘-> means no specific backbone network is used. ‘IoU’ and ‘f.w.” represent intersection over union and frequency weighted IoU.
Models: best and second best.

method base pixel ToU [%] average [%)]
scheme modularities  accuracy [%] mean f.w. recall precision
FCN-8s VGG19 99.81 10.86 99.66 11.66 92.84
FCN-8s ResNet50 99.83 13.74  99.69 15.23 77.96
Dilation - 99.77 856 99.57 890 50.80
SegNet - 99.80 9.02 99.64 10.11 94.45
U-Net - 99.73 897 99.62 12.73 88.26
AdapNet - 99.82 20.20 99.67 22.21 53.60
BiSeNet ResNet50 99.81 23.77 99.66 28.71 5142
BiSeNet ResNet101 99.81 18.30 99.64 20.22 52.66
BiSeNet ResNet152 99.81 17.85 99.65 19.78 49.54
DeepLabv3 Res50 99.80 16.15 99.62 18.94 55.44
DeepLabv3 Res101 99.80 13.27 99.61 14.35 45.67
DeepLabv3 Res152 99.80 12.64 99.61 1342 60.52
DeepLabv3 InceptionV4 58.60 451 5854 547 23.06
DenseASPP MobileNetV2 99.80 7.68 99.60 7.69 69.22
DenseASPP ResNet50 99.81 16.16 99.65 17.50 52.98
Dense ASPP ResNet101 99.81 17.00 99.65 18.74 46.02
Encoder-Decoder - 99.85 21.87 99.74 2551 40.27
Encoder-Decoder-Skip - 99.92 48.87 99.85 5531 70.63
FRRN-A - 99.92 46.85 99.85 55.06 67.11
FRRN-B - 99.92 47.02 99.85 54.72 66.19
GCN Res50 99.90 35.65 99.82 43.09 55.65
GCN Res101 99.90 34771 99.82 4142 56.49
GCN Res152 99.90 3343 99.82 39.88 56.61
Mobile-U-Net-Skip - 99.91 41.21 99.84 47.48 64.60
PSPNet Res50 99.90 35.44 99.82 42.80 57.15
PSPNet Res101 99.90 3585 99.82 42.64 58.23
PSPNet Res152 99.90 34.09 99.82 40.56 56.32
RefineNet Res152 99.80 7.68 99.60 7.69 99.98
DeepLabv3+ Res50 99.86 27.68 99.75 31.82 55.81
DeepLabv3+ Res101 99.86 2736 99.74 32.61 50.54
DeepLabv3+ Res152 99.86 31.88 99.75 36.82 59.16
DeepLabv3+ Xception65 99.87 37.14 99.77 43.14 62.07
FC-DenseNet-56 - 99.92 4491 99.85 5247 65.67
FC-DenseNet-67 - 99.92 4735 99.85 54.83 69.01
FC-DenseNet-103 - 99.92 4842 99.85 55.32 69.01
SkyScapesNet - 99.93 5193 99.87 60.53 72.29



Table 7. Evaluation of the state-of-the-art methods on the SkyScapes-Lane dataset for each class separately. ‘-> means no specific back-
bone network is used. ‘IoU’ represents intersection over union. NL, DL, LL, TDL, TS, OS, PS, CW, SL, ZZ, nPZ, PZ, and R represent
non lane-marking, dash line, long line, tiny dash line, turn sign, other signs, plus sign, crosswalk, stop line, zebra zone, no parking zone,
parking zone, and the rest of lane-markings.

method base ToU [%]
mean NL DL LL TDL TS oS PS CwW SL 7272 nPZ PZ R

FCN-8s VGGI19 10.86 99.83 22.39 18.94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FCN-8s ResNet50 13.74 99.84 39.86 27.24 0.0 0.0 0.0 0.0 11.66 0.0 0.02 0.0 0.0 0.0
Dilation - 856 99.77 0.03 541 065 126 251 0.0 0.0 168 0.0 0.0 0.0 0.0
SegNet - 9.02 99.83 0.0 17.39 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
U-Net - 897 99.81 0.23 16.56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AdapNet - 20.20 99.83 23.78 27.07 12.62 15.08 9.96 2.07 2444 4642 0.65 0.16 053 00
BiSeNet ResNet50  23.77 99.82 22.62 2247 13.55 1372 202 191 46.1 427 162 881 0.88 0.0
BiSeNet ResNet101 1830 99.81 14,5 20.1 9.32 10.71 15.14 0.58 30.65 21.29 1345 1.86 046 0.0
BiSeNet ResNetl52 17.85 99.81 18.1 214 83 143 158 00 426 294 1857 1.78 032 0.0
DeepLabv3 Res50 16.15 99.8 6.79 14.64 134 265 119 0.0 4948 2144 078 1.09 00 0.0
DeepLabv3 Res101 13.27 99.8 2.58 10.27 0.26 1.3 886 0.0 32.08 17.19 0.09 0.12 00 0.0
DeepLabv3 Res152 1264 998 3.1 1051 128 035 11.36 0.0 1844 1781 161 005 00 0.0
DeepLabv3 InceptionV4 4.51 58.66 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DenseASPP MobileNetV2 7.68 99.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DenseASPP ResNet50 16.16 99.82 219 21.87 13.03 13.77 037 59 0.0 3247 0.17 051 027 0.0
DenseASPP ResNet101  17.00 99.82 2146 2131 12.7 16.58 0.12 45 845 3435 143 0.02 025 0.0
Encoder-Decoder - 21.87 99.86 512 4273 13.62 8.02 10.1 11.57 2.13 3448 6.5 1.97 20 0.11
Encoder-Decoder-Skip - 48.87 99.93 71.14 53.83 62.16 58.67 65.75 28.48 79.07 65.75 22.57 20.77 6.99 0.22
FRRN-A InceptionV4 46.85 99.93 71.27 58.89 60.05 57.74 56.1 31.5 642 66.74 13.53 20.06 8.93 0.12
FRRN-B - 47.02 99.93 72.19 58.32 57.25 61.18 58.75 31.68 66.36 69.18 9.61 22.14 4.65 0.0
GCN Res50 35.65 99.92 67.16 543 47.53 3522 25.37 182 51.71 46.87 5.6 10.05 1.51 0.0
GCN Res101 3471 9991 66.58 50.47 43.64 38.56 20.88 11.13 564 4721 4.05 1029 2.1 00
GCN Res152 3343 9991 6542 53.32 4521 28.63 2447 6.63 5143 3934 2.02 1551 271 0.0
Mobile-U-Net - 19.84 99.84 42.11 3921 116 626 162 683 05 3248 092 134 0.67 0.0
PSPNet Res50 3544 9991 6435 5299 4244 35.17 2248 175 4278 56.16 1341 9.74 377 0.06
PSPNet Res101 35.85 9991 65.57 52.15 42.23 37.87 18.65 20.86 44.24 5855 13.84 832 3.81 0.11
PSPNet Res152 34.09 9991 64.41 5339 43.07 36.46 11.54 20.59 33.84 56.42 1446 7.69 1.33 0.0
RefineNet Res152 7.68 998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DeepLabv3+ Res50 27.68 99.87 46.04 47.53 2741 2531 27.84 884 1453 50.11 6.66 3.67 1.72 0.33
DeepLabv3+ Res101 2736 99.87 4293 46.32 26.86 26.35 22.04 132 3479 48.02 1.12 4.69 141 0.0
DeepLabv3+ Res152 31.88 99.87 4251 43.16 26.74 29.55 33.12 1197 49.03 58.63 5.74 939 469 00
DeepLabv3+ Xception65  37.14 99.88 47.75 5232 31.07 39.88 37.19 12.14 53.6 66.46 1722 2239 2.04 0.87
FC-DenseNet-56 - 4491 99.93 70.01 56.23 63.14 53.86 59.74 34.86 51.98 59.75 14.35 13.67 6.32 0.0
FC-DenseNet-67 - 4735 99.93 7091 56.06 64.61 599 5198 30.09 69.29 656 13.8 21.16 12.14 0.06
FC-DenseNet-103 - 48.42 99.93 72.25 5747 64.16 599 54.62 34.89 7434 6647 19.04 20.65 5.73 0.0
SkyScapesNet - 51.93 99.94 72.56 68.72 67.63 63.59 64.22 30.97 54.55 68.48 38.53 36.88 9.01 0.0

3

Table 8. Result of SkyScapesNet on the SkyScapes-Dense-Category task over all 11 classes as a whole.
network used. ‘IoU’ and ‘f.w.” represent intersection over union and frequency weighted IoU.

-> means no specific backbone

method base pixel IoU (%] average (%)
scheme modularities accuracy [%] mean fw. recall precision
SkyScapesNet - 86.10 52.27 7177 63.49 65.65

Table 9. Result of SkyScapesNet on SkyScapes-Dense-Category task for each class separately. ‘-’ represents no specific back-bone network
used. ‘IoU’ represents intersection over union. The abbreviations for classes are N: nature, D: driving-area, P: parking-area, H: human-
area, SH: shared human and vehicle area, RF: road-feature, R: residential, DV: dynamic-vehicle, SV: static-vehicle, HS: man-made surface,
and O: others.
method base ToU [%)]
mean N D P H SH RF R DV N HS (0]

SkyScapesNet - 5227 90.79 68.86 36.8 5095 25.87 66.09 86.84 7279 345 44.67 27.84




Table 10: List of categories including their definition and a typical ex-

ample.
Category Class Definition Examples
. Includes all natural areas without
nature low vegetation
large plants, e.g., lawns.
Areas covered by large plants, such
tree
as trees or large bushes.
Structures with walls and a roof,
residential building such as houses, factories, and
garages.
. Includes all roads that are as-
vehicle area paved-road

phalted.

All roads that are not paved, e.g.,
non-paved-road forest roads, dirt roads, and unsur-
faced roads.

includes all asphalted areas for
parking vehicles, such as car parks.

paved-parking-place ~ The parking area include the ve-
hicle as well which has not been
shown in the figure

Unsurfaced areas used for parking.
non-paved-parking- The parking area include the ve-
place hicle as well which has not been

shown in the figure.

Thin solid lines, such as no passing

lane-markings long line lines or roadside markings.




dash line

tiny dash line

zebra zone

turn sign

stop line

parking zone

no parking zone

crosswalk

plus sign

Any broken line with long line seg-
ments, e.g., lane separators.

Any broken line with tiny line seg-
ments, e.g., lines enclosing pedes-
trian crossings.

Areas with diagonal lines, e.g., re-
stricted zones.

Arrows on the road, such as inter-
section arrows or merge arrows.

Thick solid line across lanes that
signal to stop behind the line.

Includes any lines that mark park-
ing spots.

Zig-zag lines next to the curb mark
that indicate that stopping or park-
ing is forbidden.

Zebra-striped markings across the
roadway mark a pedestrian cross-
walk.

All crossing tiny lines.




other signs

rest of lane-markings

Includes all other signs, e.g., num-
bers that indicate the speed limit.

Any other lane-marking.

human area

sidewalk

bikeway

danger-area

Path with a hard surface on one or
both sides of a road for pedestrians.

Includes all lanes or roads for bikes.

The intersection of bikeways with
road marked with red, blue or green
in Germany and some other coun-
tries

shared area

entrance-exit

All entrance and exit areas that are
shared with pedestrians.

vehicle

car

van

truck

Includes all cars except vans.

Any vehicles with box-like shapes.

Includes all small trucks such as de-
livery trucks.




long-truck

trailer

bus

All long trucks such as heavy goods
vehicles.

Includes all trailers that can be at-
tached to any vehicle, e.g., trucks or
cars.

Any buses including tourist
coaches, school buses, and public
buses.

other

impervious surface

clutter

Includes all other surfaces, such
as construction sites, and non-
temporary obstacles road users can-
not go through (e.g., low wall,
rocky terrain, river).

Includes all other human made
structures, such as garbage bins,
fences, or outdoor furniture.
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Figure 1. A satellite image — acquired by WorldView4 — over the whole area of Munich, Germany. The size of the image is 45386 x
33753 pixels which is about 173 MP.



Figure 2. Sample patches from the lane-marking map of the whole area of Munich extracted using our SkyScapesNet algorithm applied to
a WorldView4 satellite image.

»



Figure 3. Performance of SkyScapesNet trained on SkyScapes and tested on different images with different timestamps, illumination
conditions, camera angle, GSD, and geographical area. The results are without GSD adjustment. This image is from Kitzingen, Germany,
taken in 2015. Top images, from left to right: RGB, dense segmentation. Bottom samples, from left to right: RGB, dense segmentation,
lane markings segmentation, borders segmentation.




Figure 4. Performance of SkyScapesNet trained on SkyScapes and tested on different images with different timestamps, illumination
conditions, camera angle, GSD, and geographical area. The results are without GSD adjustment. This image is from Frankfurt, Germany,
taken in 2013. Top images, from left to right: RGB, dense segmentation. Bottom samples, from left to right: RGB, dense segmentation,
lane markings segmentation, borders segmentation.




Figure 5. Performance of SkyScapesNet trained on SkyScapes and tested on different images with different timestamps, illumination

conditions, camera angle, GSD, and geographical area. The results are without GSD adjustment. This image is from Braunschweig,

Germany, taken in 2017. Top images, from left to right: RGB, dense segmentation. Bottom samples, from left to right: RGB, dense
segmentation, lane markings segmentation, borders segmentation.




