
What Is Wrong With Scene Text Recognition Model Comparisons?
Dataset and Model Analysis

Jeonghun Baek1 Geewook Kim2∗ Junyeop Lee1 Sungrae Park1

Dongyoon Han1 Sangdoo Yun1 Seong Joon Oh1 Hwalsuk Lee1†

1Clova AI Research, NAVER/LINE Corp. 2Kyoto University
{jh.baek,junyeop.lee,sungrae.park,dongyoon.han,sangdoo.yun,hwalsuk.lee}@navercorp.com

geewook@sys.i.kyoto-u.ac.jp coallaoh@linecorp.com

A. Contents
Appendix B : Dataset Matters in STR - examples

• We illustrate examples of the problematic datasets de-
scribed in §2 and §4.1.

Appendix C : STR Framework - verification

• We verify our STR module implementations for our
framework by reproducing four existing STR models,
namely CRNN [9], RARE [10], GRCNN [13], and
FAN (w/o Focus Net) [3].

Appendix D : STR Framework - architectural details

• We describe the architectural details of all modules in
our framework described in §3.

Appendix E : STR Framework - full experimental results

• We provide the comprehensive results of our experi-
ments described in §4, and discuss them in detail.

Appendix F : Additional Experiments

• We provide 3 experiments; fine-tuning, varying train-
ing dataset size and test on COCO dataset [12].

B. Dataset Matters in STR - examples
IC03 - 7 missing words boxes in 860 evaluation dataset.
The original IC03 evaluation dataset has 1,110 images,
but prior works have conducted additional filtering, as de-
scribed in §2. All papers have ignored all words that are
either too short (less than 3 characters) or ones that contain
non-alphanumeric characters. Although all papers have sup-
posedly applied the same data filtering method and should
have reduced the evaluation set from 1,110 images to 867
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Figure A: 7 missing examples of IC03-860 evaluation
dataset. The examples represented by the red-colored word
boxes of the two real scene images are included in IC03-
867, but not in IC03-860.

images, the reported example numbers are different: either
the expected 867 images or a further reduced 860 images.
We identified the missing examples as shown in Figure A.

IC15 - Filtered examples in evaluation dataset. The IC15
dataset originally contains 2,077 examples for its evaluation
set, however prior works [3, 2] have filtered it down to 1,811
examples and have not given unambiguous specifications
between them for deciding on which example to discard.
To resolve this ambiguity, we have contacted one of the
authors, who shared the specific dataset used for the eval-
uation. This information is made available with the source
code on Github. A few sample images that have been filtered
out of the IC15 evaluation dataset is shown in Figure B.

IC03 and IC13 - Duplicated images between IC03 train-
ing dataset and IC13 evaluation dataset. Figure C shows
two images from the subset given by the intersection be-
tween the IC03 training dataset and the IC13 evaluation
dataset. In our investigation, a total of 34 duplicated scene
images have been found, amounting to 215 duplicate word
boxes, in total. Therefore, when one assesses the perfor-
mance of a model on the IC13 evaluation data, he/she
should be mindful of these overlapping data.



Model Train Data IIIT SVT IC03 IC13 IC15 SP CT
3000 647 860 867 857 1015 1811 2077 645 288

CRNN [9] reported in paper MJ 78.2 80.8 89.4 − − 86.7 − − − −
CRNN our implementation MJ 81.2 81.8 91.1 − − 87.6 − − − −
RARE [10] reported in paper MJ 81.9 81.9 90.1 − 88.6 − − − 71.8 59.2
RARE our implementation MJ 83.1 84.0 92.2 − 91.3 − − − 74.3 64.2
GRCNN [13] reported in paper MJ 80.8 81.5 91.2 − − − − − − −
GRCNN our implementation MJ 82.0 81.1 90.3 − − − − − − −
FAN (w/o Focus Net)[3] reported in paper MJ+ST 83.7 82.2 − 91.5 − 89.4 63.3 − − −
FAN (w/o Focus Net) our implementation MJ+ST 86.4 86.2 − 94.3 − 90.6 73.3 − − −

Table A: Sanity checking our experimental platform by reproducing the existing four STR models: CRNN [9], RARE [10],
GRCNN [13] and FAN (w/o Focus Net [3]).

Figure B: Images that were filtered out of the IC15 evalua-
tion dataset.

Figure C: Duplicated scene images. These are example im-
ages that have been found in both the IC03 training dataset
and the IC13 evaluation dataset.

C. STR Framework - verification

To show the correctness of our implemented module for
our framework, we reproduce the performances of existing
models that can be re-built by our framework. Specifically,
we compare the results of our implementation of CRNN,
RARE, GRCNN, and FAN (w/o Focus Net) [9, 10, 13, 3]
from those of publicly reported by the authors. We imple-
mented each module as described in their original papers,
and also we followed the training and evaluation pipelines
of their original papers to train the individual models. Ta-
ble A shows the results. Our implementation has over-
all similar performance with reported result in their paper,
which verify the sanity of our implementations and experi-
ments.

D. STR Framework - architectural details

In this appendix, we describe each module of our frame-
work in terms of its concept and architectural specifications.
We first introduce common notations used in this appendix
and then explain the modules of each stage; Trans., Feat.,
Seq., and Pred.
Notations For a simple expression for a neural network ar-
chitecture, we denote ‘c’, ‘k’, ‘s’ and ‘p’ for the number
of the output channel, the size of kernel, the stride, and
the padding size respectively. BN, Pool, and FC denote the
batch normalization layer, the max pooling layer, and the
fully connected layer, respectively. In the case of convolu-
tion operation with the stride of 1 and the padding size of 1,
‘s’ and ‘p’ are omitted for convenience.

D.1. Transformation stage

The module of this stage transforms the input image X
into the normalized image X̃ . We explained the concept of
TPS [10, 8] in §3.1, but here we deliver its mathematical
background and the implementation details.
TPS transformation: TPS generates a normalized image
that shows a focused region of an input image. To build this
pipeline, TPS consists of a sequence of processes; finding
a text boundary, linking the location of the pixels in the
boundary to those of the normalized image, and generat-
ing a normalized image by using the values of pixels and
the linking information. Such processes are called as local-
ization network, grid generator, and image sampler, respec-
tively. Conceptually, TPS employs a smooth spline interpo-
lation between a set of F fiducial points that represented a
focused boundary of text in an image. Here, F indicates the
constant number of fiducial points.

The localization network explicitly calculates x, y-
coordinates of F fiducial points on an input image, X . The
coordinates are denoted by C = [c1, . . . , cF ] ∈ R2×F ,
whose f -th column cf = [xf , yf ]

ᵀ contains the coordinates
of the f -th fiducial point. C̃ represents pre-defined top and
bottom locations on the normalized image, X̃ .



The grid generator provides a mapping function from the
identified regions by the localization network to the normal-
ized image. The mapping function can be parameterized by
a matrix T ∈ R2×(F+3), which is computed by

T =

(
∆−1

C̃

[
Cᵀ

03×2

])ᵀ

(1)

where ∆C′ ∈ R(F+3)×(F+3) is a matrix determined only
by C̃, thus also a constant:

∆C̃ =

1F×1 C̃ᵀ R
0 0 11×F

0 0 C̃

 (2)

where the element of i-th row and j-th column of R is
dij ln d

2
ij , dij is the euclidean distance between c̃i and c̃j .

The pixels of grid on the normalized image X̃ is denoted
by P̃ = {p̃i}i=1,...,N , where p̃i = [x̃i, ỹi]

ᵀ is the x,y-
coordinates of the i-th pixel, N is the number of pixels.
For every pixel p̃i on X̃ , we find the corresponding point
pi = [xi, yi]

ᵀ on X , by applying the transformation:

pi = T [1, x̃i, ỹi, ri1, . . . , riF ]
ᵀ (3)

rif = d2if ln dif (4)

where dif is the euclidean distance between pixel p̃i and
the f -th base fiducial point c̃f . By iterating Eq. 3 over all
points in P̃ , we generate a grid P = {pi}i=1,...,N on the
input image X .

Finally, the image sampler produces the normalized im-
age by interpolating the pixels in the input images which are
determined by the grid generator.
TPS-Implementation: TPS requires the localization net-
work calculating fiducial points of an input image. We de-
signed the localization network by following most of the
components of prior work [10], and added batch normal-
ization layers and adaptive average pooling to stabilize the
training of the network. Table B shows the details of our ar-
chitecture. In our implementation, the localization network
has 4 convolution layers, each followed by a batch normal-
ization layer and 2 x 2 max-pooling layer. The filter size,
padding size, and stride are 3, 1, 1 respectively, for all con-
volutional layers. Following the last convolutional layer is
an adaptive average pooling layer (APool in Table B). After
that, two fully connected layers are following: 512 to 256
and 256 to 2F. Final output is 2F dimensional vector which
corresponds to the value of x, y-coordinates of F fiducial
points on input image. Activation functions for all layers
are the ReLU.

D.2. Feature extraction stage

In this stage, a CNN abstract an input image (i.e., X or
X̃) and outputs a feature map V = {vi}, i = 1, . . . , I (I is
the number of columns in the feature map).

Layers Configurations Output
Input grayscale image 100× 32
Conv1 c: 64 k: 3× 3 100× 32
BN1 - 100× 32
Pool1 k: 2× 2 s: 2× 2 50× 16
Conv2 c: 128 k: 3× 3 50× 16
BN2 - 50× 16
Pool2 k: 2× 2 s: 2× 2 25× 8
Conv3 c: 256 k: 3× 3 25× 8
BN3 - 25× 8
Pool3 k: 2× 2 s: 2× 2 12× 4
Conv4 c: 512 k: 3× 3 12× 4
BN4 - 12× 4
APool 512× 12× 4→ 512× 1 512
FC1 512→ 256 256
FC2 256→ 2F 2F

Table B: Architecture of the localization network in TPS.
The localization network extracts the location of the text
line, that is, the x- and y-coordinates of the fiducial points
F within the input image.

Layers Configurations Output
Input grayscale image 100× 32
Conv1 c: 64 k: 3× 3 100× 32
Pool1 k: 2× 2 s: 2× 2 50× 16
Conv2 c: 128 k: 3× 3 50× 16
Pool2 k: 2× 2 s: 2× 2 25× 8
Conv3 c: 256 k: 3× 3 25× 8
Conv4 c: 256 k: 3× 3 25× 8
Pool3 k: 1× 2 s: 1× 2 25× 4
Conv5 c: 512 k: 3× 3 25× 4
BN1 - 25× 4
Conv6 c: 512 k: 3× 3 25× 4
BN2 - 25× 4
Pool4 k: 1× 2 s: 1× 2 25× 2

Conv7 c: 512 k: 2× 2
24× 1s: 1× 1 p: 0× 0

Table C: Architecture of VGG.

VGG: we implemented VGG [11] which is used in
CRNN [9] and RARE [10]. We summarized the architec-
ture in Table C. The output of VGG is 512 channels × 24
columns.
Recurrently applied CNN (RCNN): As a RCNN module,
we implemented a Gated RCNN (GRCNN) [13] which is
a variant of RCNN that can be applied recursively with a
gating mechanism. The architectural details of the module
are shown in Table D. The output of RCNN is 512 channels
× 26 columns.



Layers Configurations Output
Input grayscale image 100× 32
Conv1 c: 64 k: 3× 3 100× 32
Pool1 k: 2× 2 s: 2× 2 50× 16
GRCL1

[
c :64, k :3× 3

]
× 5 50× 16

Pool2 k: 2× 2 s: 2× 2 25× 8
GRCL2

[
c :128, k :3× 3

]
× 5 25× 8

Pool3 k: 2× 2
26× 4s: 1× 2 p: 1× 0

GRCL3
[
c :256, k :3× 3

]
× 5 26× 4

Pool4 k: 2× 2
27× 2s: 1× 2 p: 1× 0

Conv2 c: 512 k: 3× 3
26× 1s: 1× 1 p: 0× 0

Table D: Architecture of RCNN.

Layers Configurations Output
Input grayscale image 100× 32
Conv1 c: 32 k: 3× 3 100× 32
Conv2 c: 64 k: 3× 3 100× 32
Pool1 k: 2× 2 s: 2× 2 50× 16

Block1
[
c :128, k :3× 3
c :128, k :3× 3

]
× 2 50× 16

Conv3 c: 128 k: 3× 3 50× 16
Pool2 k: 2× 2 s: 2× 2 25× 8

Block2
[
c :256, k :3× 3
c :256, k :3× 3

]
× 2 25× 8

Conv4 c: 256 k: 3× 3 25× 8

Pool3 k: 2× 2
26× 4s: 1× 2 p: 1× 0

Block3
[
c :512, k :3× 3
c :256, k :3× 3

]
× 5 26× 4

Conv5 c: 512 k: 3× 3 26× 4

Block4
[
c :512, k :3× 3
c :512, k :3× 3

]
× 3 26× 4

Conv6 c: 512 k: 2× 2
27× 2s: 1× 2 p: 1× 0

Conv7 c: 512 k: 2× 2
26× 1s: 1× 1 p: 0× 0

Table E: Architecture of ResNet.

Residual Network (ResNet): As a ResNet [7] module, we
implemented the same network which is used in FAN [3]. It
has 29 trainable layers in total. The details of the network is
shown in Table E. The output of ResNet is 512 channels ×
26 columns.

D.3. Sequence modeling stage

Some previous works used Bidirectional LSTM (BiL-
STM) to make a contextual sequence H = Seq.(V) after
the Feat. stage [9].
BiLSTM: We implemented 2-layers BiLSTM [6] which is
used in CRNN [9]. In the followings, we explain a BiLSTM
layer used in our framework: A lth BiLSTM layer identifies
two hidden states, h(t),fi and h(t),bi ∀t, calculated through
time sequence and its reverse. Following [9], we addition-
ally applied a FC layer between BiLSTM layers to deter-
mine one hidden state, ĥ(l)t , by using the two identified hid-
den states, h(l),ft and h(l),bt . The dimensions of all hidden
states including the FC layer was set as 256.
None indicates not to use any Seq. modules upon the output
of the Feat. modules, that is, H = V .

D.4. Prediction stage

A prediction module produces the final prediction out-
put from the input H , (i.e., Y = y1, y2, . . . ), which is a se-
quence of characters. We implemented two modules: Con-
nectionist Temporal Classification (CTC) [5] based and At-
tention mechanism (Attn) based Pred. module. In our ex-
periments, we make the character label set C which include
36 alphanumeric characters. For the CTC, additional blank
token is added to the label set due to the characteristics of
the CTC. For the Attn, additional end of sentence (EOS) to-
ken is added to the label set due to the characteristics of the
Attn. That is, the number of character set C is 37.
Connectionist Temporal Classification (CTC): CTC
takes a sequence H = h1, . . . , hT , where T is the sequence
length, and outputs the probability of π, which is defined as

p(π|H) =

T∏
t=1

ytπt
(5)

where ytπt
is the probability of generating character πt at

each time step t. After that, the mapping function M which
maps π to Y by removing repeated characters and blanks.
For instance, M maps “aaa--b-b-c-ccc-c--” onto
“abbccc”, where ’-’ is blank token. The conditional prob-
ability is defined as the sum of probabilities of all π that are
mapped by M onto Y , which is

p(Y |H) =
∑

π:M(π)=Y

p(π|H) (6)

At testing phase, the predicted label sequence is calculated
by taking the highest probability character πt at each time
step t, and map the π onto Y :

Y ∗ ≈M(argmax
π

p(π|H)) (7)

Attention mechanism (Attn): We implemented one layer
LSTM attention decoder [1] which is used in FAN, AON,



and EP [3, 4, 2]. The details are as follows: at t-step, the
decoder predicts an output yt as

yt = softmax(Wost + bo) (8)

where W0 and b0 are trainable parameters. st is the decoder
LSTM hidden state at time t as

st = LSTM(yt−1, ct, st−1) (9)

and ct is a context vector, which is computed as the
weighted sum of H = h1, ...hI from the former stage as

ct =

I∑
i=1

αtihi (10)

where αti is called attention weight and computed by

αti =
exp(eti)∑I
k=1 exp(etk)

(11)

where

eti = vᵀ tanh(Wst−1 + V hi + b) (12)

and v, W , V and b are trainable parameters. The dimension
of LSTM hidden state was set as 256.

D.5. Objective function

Denote the training dataset by TD = {Xi, Yi}, where
Xi is the training image and Yi is the word label. The
training conducted by minimizing the objective function
that negative log-likelihood of the conditional probability
of word label.

O = −
∑

Xi,Yi∈TD
log p(Yi|Xi) (13)

This function calculates a cost from an image and its word
label, and the modules in the framework are trained end-to-
end manner.

E. STR Framework - full experimental results
We report the full results of our experiments in Table F.

In addition, Figure D–G show two types of trade-off plots
of 24 combinations in respect of accuracy versus time and
accuracy versus memory. In Figure D–G, all the combina-
tion are color-coded in terms of each module, which helps
to grasp the effectiveness of each module.



# Trans. Feat. Seq. Pred. IIIT SVT IC03 IC13 IC15 SP CT Acc. Time params
3000 647 860 867 857 1015 1811 2077 645 288 Total ms ×106

1

None

VGG
None CTC 76.2 73.8 86.7 86.0 84.8 81.9 56.6 52.4 56.6 49.9 69.5 1.3 5.6

2 Attn 80.1 78.4 91.0 90.5 88.5 86.3 63.0 58.3 66.0 56.1 74.6 19.0 6.6
31

BiLSTM CTC 82.9 81.6 93.1 92.6 91.1 89.2 69.4 64.2 70.0 65.5 78.4 4.4 8.3
4 Attn 84.3 83.8 93.7 93.1 91.9 90.0 70.8 65.4 71.9 66.8 79.7 21.2 9.2
5

RCNN
None CTC 80.9 78.5 90.5 89.8 88.4 85.9 65.1 60.5 65.8 60.3 75.4 7.7 1.9

62 Attn 83.4 82.4 92.2 92.0 90.2 88.1 68.9 63.6 72.1 64.9 78.5 24.1 2.9
73

BiLSTM CTC 84.2 83.7 93.5 93.0 90.9 88.8 71.4 65.8 73.6 68.1 79.8 10.7 4.6
8 Attn 85.7 84.8 93.9 93.4 91.6 89.6 72.7 67.1 75.0 69.2 81.0 27.4 5.5
94

ResNet
None CTC 84.3 84.7 93.4 92.9 90.9 89.0 71.2 66.0 73.8 69.2 80.0 4.7 44.3

10 Attn 86.1 85.7 94.0 93.6 91.9 90.1 73.5 68.0 74.5 72.2 81.5 22.2 45.3
11 BiLSTM CTC 86.2 86.0 94.4 94.1 92.6 90.8 73.6 68.0 76.0 72.2 81.9 7.8 47.0
12 Attn 86.6 86.2 94.1 93.7 92.8 91.0 75.6 69.9 76.4 72.6 82.5 25.0 47.9
13

TPS

VGG
None CTC 80.0 78.0 90.1 89.7 88.7 87.5 65.1 60.6 65.5 57.0 75.1 4.8 7.3

14 Attn 82.9 82.3 92.0 91.7 90.5 89.2 69.4 64.2 73.0 62.2 78.5 21.0 8.3
15 BiLSTM CTC 84.6 83.8 93.3 92.9 91.2 89.4 72.4 66.8 74.0 66.8 80.2 7.6 10.0
165 Attn 86.2 85.8 93.9 93.7 92.6 91.1 74.5 68.9 76.2 70.4 82.0 23.6 10.8
17

RCNN
None CTC 82.8 81.7 92.0 91.6 89.5 88.4 69.8 64.6 71.3 61.2 78.3 10.9 3.6

18 Attn 85.1 84.0 93.1 93.1 91.5 90.2 72.4 66.8 75.6 64.9 80.6 26.4 4.6
19 BiLSTM CTC 85.1 84.3 93.5 93.1 91.4 89.6 73.4 67.7 74.4 69.1 80.8 14.1 6.3
20 Attn 86.3 85.7 94.0 94.0 92.8 91.1 75.0 69.2 77.7 70.1 82.3 30.1 7.2
21

ResNet
None CTC 85.0 85.7 94.0 93.6 92.5 90.8 74.6 68.8 75.2 71.0 81.5 8.3 46.0

22 Attn 87.1 87.1 94.3 93.9 93.2 91.8 76.5 70.6 78.9 73.2 83.3 25.6 47.0
236

BiLSTM CTC 87.0 86.9 94.4 94.0 92.8 91.5 76.1 70.3 77.5 71.7 82.9 10.9 48.7
247 Attn 87.9 87.5 94.9 94.4 93.6 92.3 77.6 71.8 79.2 74.0 84.0 27.6 49.6

1 CRNN. 2 R2AM. 3 GRCNN. 4 Rosetta. 5 RARE. 6 STAR-Net. 7 our best model.

Table F: The full experimental results for all 24 STR combinations. Top accuracy for each benchmark is shown in bold. For
each STR combination, we have run five trials with different initialization random seeds and have averaged their accuracies.
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Figure D: Color-coded version of Figure 4 in §4.3, according to the transformation stage. Each circle represents the perfor-
mance for each different combination of STR modules, while the each cross represents the average performance among STR
combinations without TPS (black) or with TPS (magenta). Choosing to add TPS or not does not seem to give a noticeable
advantage in performance when looking at the performances of each STR combination. However, the average accuracy does
increase when using TPS compared to when it is unused, at the cost of longer inference times and a slight increase in the
number of parameters.
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Figure E: Color-coded version of Figure 4 in §4.3, according to the feature extraction stage. Each circle represents the
performance for each different combination of STR modules, while the each cross represents the average performance among
STR combinations using VGG (green), RCNN (orange), or ResNet (violet). VGG gives the lowest accuracy on average for
the lowest amount of inference time required, while RCNN achieves higher accuracy over VGG by taking the longest time
for inferencing and the lowest memory usage out of the three. ResNet, exhibits the highest accuracy at the cost of using
significantly more memory than the other modules. In summary, if the system to be implemented is constrained by memory,
RCNN offers the best trade-off, and if the system requires high accuracy, ResNet should be used. The time difference between
the three modules are so small in practice that it should be considered only in the most extreme of circumstances.
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Figure F: Color-coded version of Figure 4 in §4.3, according to the sequence modeling stage. Each circle represents the
performance for each different combination of STR modules, while the each cross represents the average performance among
STR combinations without BiLSTM (gray) or with BiLSTM (gold). Using BiLSTM seems to have a similar effect to using
TPS, and vice versa, except BiLSTM gives a larger accuracy boost on average with similar inference time or parameter size
concessions compared to TPS.
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Figure G: Color-coded version of Figure 4 in §4.3, according to prediction stage. Each circle represents the performance for
each different combination of STR modules, while the each cross represents the average performance among STR combina-
tions with CTC (cyan) or with Attn (blue). The choice between CTC and Attn gives the largest and clearest inference time
increase for each percentage of accuracy gained. The same cannot be said about the increase in the number of parameters
with respect to accuracy increase, as Attn gains about 2 percentage points with minimal memory usage increase.



F. Additional Experiments
F.1. Fine-tuning on real datasets

We have fine-tuned our best model on the union of train-
ing sets IIIT, SVT, IC13, and IC15 (in-distribution), the
held-out subsets of evaluation datasets of real scene text
images. Other evaluation datasets, IC03, SP, and CT (out-
distribution), do not have held-out subset for training; SP
and CT have not training sets and some training images of
IC03 have been found in IC13 evaluation dataset, as men-
tioned in §4.1, thus it is not appropriate to fine-tuning on
IC03 training set.

Our model has been fine-tuned for 10 epochs. The ta-
ble G shows the results. By fine-tuning on the real data,
the accuracy on in-distribution subset (the union of evalu-
ation datasets IIIT, SVT, IC13, and IC15) and on all bench-
mark data have improved by 2.2 pp and 1.5 pp, respec-
tively. Meanwhile, the fine-tuned performance on the out-
distribution subset (the union of evaluation datasets IC03,
SP, and CT) has decreased by 1.3 pp. We conclude that fine-
tuning over real data is effective when the real-data is close
to the test-time distribution. Otherwise, fine-tuning over real
data may do more harm than good.

Accuracy (%)
in-distribution out-distribution all

Original 83.9 85.1 84.1
Fine-tuned 86.1(+2.2) 83.8(-1.3) 85.6(+1.5)

Table G: Accuracy change with fine-tuning on real datasets.

F.2. Accuracy with varying training dataset size

We have evaluated the accuracy of all 24 STR models
against varying training dataset size. Training dataset con-
sists of MJSynth 8.9 M and SynthText 5.5 M (14.4 M in
total), same setting as in §4.1. We report the full results of
varying training dataset size in Table H. In addition, Fig-
ure H–K show averaged accuracy plots. Each plot is color-
coded in terms of each module, which helps to grasp the
tendency of each module.

From the Table H and the plot of average of all models in
Figure H–K, we observe that the average of all 24 models
tends to have higher accuracy with more data.

In Figure H, we observe that the curves of without TPS
do not get saturated at 100% training data size; more train-
ing data are certainly likely to improve them. The curves of
TPS show saturated performances at 80% training data. We
conjecture this is because TPS usually normalizes the input
images and the last 20% of training dataset would be nor-
malized by TPS, rather than improve accuracy. Thus other
kinds of datasets, which will not simply be normalized by
TPS trained with 80% training dataset, would be needed to
better accuracy.

# Trans. Feat. Seq. Pred. Training dataset size (%)
20 40 60 80 100

1

None

VGG
None CTC 66.1 68.1 69.2 68.8 68.8

2 Attn 71.5 73.0 74.2 74.7 74.6
31

BiLSTM CTC 75.8 77.6 77.7 77.9 78.6
4 Attn 75.6 77.9 79.3 79.3 79.7
5

RCNN
None CTC 69.7 71.2 72.0 75.5 74.7

62 Attn 76.2 77.5 77.3 78.1 78.2
73

BiLSTM CTC 77.1 78.8 79.6 80.0 79.7
8 Attn 77.9 79.6 80.3 80.5 81.3
94

ResNet
None CTC 75.9 77.8 78.8 78.9 80.7

10 Attn 78.0 80.3 80.5 81.6 81.5
11 BiLSTM CTC 78.9 80.7 80.8 81.3 81.7
12 Attn 79.2 81.0 81.9 82.3 82.6
13

TPS

VGG
None CTC 73.8 74.9 75.4 75.5 75.2

14 Attn 75.9 78.3 78.8 78.5 78.7
15 BiLSTM CTC 77.9 79.2 79.9 79.5 80.1
165 Attn 79.6 81.1 81.7 82.0 81.9
17

RCNN
None CTC 77.8 78.5 76.8 78.6 78.1

18 Attn 79.2 79.8 80.5 80.4 80.7
19 BiLSTM CTC 78.7 80.7 81.2 80.8 80.9
20 Attn 80.4 81.8 82.2 82.5 83.1
21

ResNet
None CTC 80.7 80.7 80.8 81.7 81.9

22 Attn 80.7 81.6 82.6 83.0 83.3
236

BiLSTM CTC 80.7 81.8 82.6 83.0 83.2
247 Attn 81.3 82.7 83.2 84.0 84.1

1 CRNN. 2 R2AM. 3 GRCNN. 4 Rosetta. 5 RARE. 6 STAR-Net. 7 our best model.

Table H: The full experimental results of varying training
dataset size for all 24 STR combinations. Each value rep-
resent Total accuracy (%), as mentioned in §4.1. Note that,
for each STR combination, we have run only one trial and
thus the result could be slightly different from the Table F.

In Figure I, we observe that the curves of ResNet do not
get saturated at 100% training data size. The averages of
VGG and RCNN, on the other hand, show saturated per-
formances at 60% and 80% training data, respectively. We
conjecture this is because VGG and RCNN have lower ca-
pacity than ResNet and they have already reached their per-
formance limits at the current amount of training data.

In Figure J, we observe that the curves of BiLSTM do
not get saturated at 100% training data size. The curves
of without BiLSTM show saturated performances at 80%
training data. We conjecture this is because using BiLSTM
has higher capacity than without BiLSTM and thus using
BiLSTM still has room for improving accuracy with more
training data.

In Figure K, we observe that the curves of Attn do not
get saturated at 100% training data size. The curves of CTC
show saturated performances at 80% training data. Again,
we conjecture this is because using Attn has higher capacity
than CTC and thus using Attn still has room for improving
accuracy with more training data.
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Figure H: Averaged accuracy with varying training dataset
size. Each plot represents the average performance among
STR combinations without TPS (brown), with TPS
(magenta), or all models (black)
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Figure I: Averaged accuracy with varying training dataset
size. Each plot represents the average performance among
STR combinations using VGG (green), RCNN (orange),
ResNet (violet), or all models (black)
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Figure J: Averaged accuracy with varying training dataset
size. Each plot represents the average performance among
STR combinations without BiLSTM (gray), with BiLSTM
(gold), or all models (black)
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Figure K: Averaged accuracy with varying training dataset
size. Each plot represents the average performance among
STR combinations with CTC (cyan), with Attn (blue), or
all models (black)

F.3. Evaluation on COCO-Text dataset

We have evaluated the models on COCO-Text
dataset [12], another good benchmark derived from

MS COCO containing complex and low-resolution scene
images. COCO-Text contains many special characters,
heavy noises, and occlusions; it is generally considered
more challenging than the seven benchmarks considered so
far. Figure L shows the accuracy-time and accuracy-space
trade-off plots for 24 STR methods on COCO-Text.
Except that the overall accuracy is lower, the relative
orders amongst methods are largely preserved compared
to Figure 4. Fine-tuning models with COCO-Text training
set has improved the averaged accuracy (24 models) from
42.4% to 58.2%, a relatively big jump that is attributable
to the unusual data distribution for COCO-Text. Evaluation
and analysis over COCO-Text are beneficial, especially to
address remaining corner cases for STR.
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