
Normalized Wasserstein for Mixture Distributions with Applications in
Adversarial Learning and Domain Adaptation: Supplementary material

1. Proof of Theorem 1
For NW measure to normalize mode proportions appro-

priately, we need a good estimate of the number of mode
proportions. Theorem 1 provides conditions under which
the mode proportions can provable be estimated.

Let PX and PY be two mixture distributions whose NW
measure we wish to compute. Let PX and PY have n1 and
n2 modes respectively, with r modes overlapping. Let k∗ =
n1 + n2 − r. We make the following assumptions

• (A1) If mode i in distribution X and mode j in distri-
bution Y belong to the same mixture component, then
their Wasserstein distance is ≤ ε i.e., if Xi and Yj cor-
respond to the same component, W (PXi

,PYj
) < ε.

• (A2) The minimum Wasserstein distance between any
two modes of one mixture distribution is at least δ i.e.,
W (PXi

,PXj
) > δ and W (PYi

,PYj
) > δ ∀i 6= j.

Also, non-overlapping modes between X and Y are
separated by δ i.e., for non-overlapping modes Xi and
Yj , W (PXi

,PYj
) > δ. This ensures that modes are

well-separated.

• (A3) We assume that each mode Xi and Yi have den-
sity at least η i.e., PXi

≥ η ∀i, PYi
≥ η ∀i. This

ensures that every mode proportion is at least η.

• (A4) Each generator Gi is powerful enough to capture
exactly one mode of distribution PX or PY .

Lemma 1 NW (k) is a monotonically decreasing function
with respect to k.

This is because inNW (k+1), we add one additional mode
compared to NW (k). If we have π(1), π(2) for this new
mode to be 0 and give the same assignements as NW (k)
to the rest of the modes, NW (k + 1) = NW (k). Since
computing NW (k) contains a minimization over mode as-
signments, the NW (k + 1) ≤ NW (k)∀k. Hence, it is
monotonically decreasing.

Lemma 2 NW (k∗) ≤ ε

This is because at k = k∗, we can make the following
mode assignments.

• Assign n1+n2−r modes of NW to each of n1+n2−r
non-overlapping modes in PX and PY with the same
mixture .

• Assign the remaining r modes of NW to the overlap-
ping modes of either PX or PY . WLOG, let us assume
we assign them to r overlapping modes of PX .

• Choose π(1) to be same as π for PX , with 0 to non-
overlapping components of PY

• Choose π(2) to be same as π for PY , with 0 to non-
overlapping components of PX

Let us denote NOv(X) to be non-overlapping modes
of X , Ov(X) to be overlapping modes of X , NOv(Y) to
be non-overlapping modes of Y , and Ov(Y) to be overlap-
ping modes of Y . Then, under the mode assignments given
above, NW (k∗) can be evaluated as,

WN (PX ,PY)
:= min

G,π(1),π(2)
W (PX ,PG,π(1)) +W (PY ,PG,π(2)).

=
∑

i∈NOv(X)

πXi W (PXi
,PXi

) +
∑

i∈Ov(X)

πXi W (PXi
,PXi

)+

∑
i∈NOv(Y)

πYi W (PYi
,PYi

) +
∑

i∈Ov(Y)

πYi W (PYi
,PXi

)

= 0 + 0 + 0 +
∑

i∈Ov(Y)

πYi W (PYi
,PXi

)

≤ ε

The last step follows from (A1) i.e., overlapping modes are
separated by a Wasserstein distance of ε.

Lemma 3 NW (k∗ − 1) ≥ δ
2η

By assumption (A2), we know that any two modes have
separation of at least δ. In the distribution PX + PY , there
are n1 +n2− r unique cluster centers, each pair of clusters
at a Wasserstein distance δ distance apart. In NW (k∗ − 1),
generators have n1+n2−r−1 modes, which is 1 less than
the number of modes in PX + PY . Now, let us assume that

1

NW (k∗ − 1) < δ
2η. Then,

W (PX ,PG,π(1)) +W (PY ,PG,π(2)) <
δ

2
η

Since each mode of PX and PY has density at least η (by
(A3)), the above condition can be satisfied only if

∀i ∈ [n1],∃j ∈ [k∗ − 1] s.t. W (PXi ,PGj) <
δ

2
(1)

∀i ∈ [n2],∃j ∈ [k∗ − 1] s.t. W (PYi
,PGj

) <
δ

2
(2)

Accounting for r mode overlap between X and Y , there
will be n1+n2−r unique constraints in Eq. (1) and Eq. (2).
Since, G has only k∗ − 1 modes, by Pigeonhole principle,
there should be at least one pair (i, j) that is matched to the
same Gj . WLOG, let us consider both i and j to belong to
PX , although each can either belong to PX or PY . Then,

W (PXi
,Gk) <

δ

2

W (PXj ,Gk) <
δ

2

Then, by triangle inequality, W (PXi ,PXj) < δ. This con-
tradicts assumption (A2). Hence NW (k∗ − 1) ≥ δ

2η

Theorem 1 Let PX and PY be two mixture distributions
satisfying (A1)-(A4) with n1 and n2 mixture components,
respectively, where r of them are overlapping. Let k∗ =
n1 + n2 − r. Then, k∗ is smallest k for which NW (k) is
small (O(ε)) and NW (k)−NW (k− 1) is relatively large
(in the O(δη))

Proof: From Lemma 2 and Lemma 1, we know that
NW (k) ≤ ε ∀k ≥ k∗. Similarly, from Lemma 3 and
Lemma 1, we NW (k) ≥ δ

2η ∀k < k∗. Hence, k∗

is the smallest k for which NW (k) is small (O(ε)) and
NW (k) − NW (k − 1) is relatively large (in the O(δη)).
Hence, proved.

2. Properties of Normalized Wasserstein mea-
sure

The defined NW measure is not a distance because it
does not satisfy the properties of a distance measure.

• In general, WN (PX ,PY) 6= 0. However, if
PX ∈ PG,π , WN (PX ,PX) = 0. Moreover, if
∃G, π s.t. WN (PG,π,PX) < ε (i.e., PG,π approxi-
mates PX within ε factor), then WN (PX ,PX) ≤ 2ε.
This follows from the definition of NW measure. So,
when the class of generators are powerful enough, this
property is satisfied within 2ε approximation

• Normalized Wasserstein measure is symmetric.
WN (PX ,PY) =WN (PY ,PX)

• Normalized Wasserstein measure does not satisfy tri-
angle inequality.

3. Optimizing Normalized Wasserstein using
duality

NW measure between two distributions PX and PY is
defined as

min
G,π(1),π(2)

W (PX ,PG,π(1)) +W (PY ,PG,π(2))

Similar to [1], using the dual of Wasserstein distance, we
can write the above optimization as

min
G,π(1),π(2)

[
max

D1∈1−Lip
E[D1(X)]− E[

∑
i

π
(1)
i D1(Gi(Z))]+

max
D2∈1−Lip

E[D2(Y)]− E[
∑
i

π
(2)
i D2(Gi(Z))]

]
(3)

Here, D1 andD2 are 1-Lipschitz functions, and π(1) and
π(2) are k−dimesional vectors lying in a simplex i.e.,∑

i

π
(1)
i = 1,

∑
i

π
(2)
i = 1

To enforce these constraints, we use the softmax function as
follows.

π(1) = softmax(π̃(1)), π(2) = softmax(π̃(2))

The new variables π̃(1) and π̃(2) become optimization vari-
ables. The softmax function ensures that the mixture prob-
abilities π(1) and π(2) lie in a simplex.

The above equations are optimized using alternating gra-
dient descent given by the following algorithm.

4. Comparative analysis of mixture distribu-
tions

In this section, we propose a test using a combination
of Wasserstein distance and NW measure to identify if two
mixture distributions differ in mode components or mode
proportions. Such a test can provide better understanding
while comparing mixture distributions. Suppose PX and
PY are two mixture distributions with the same mixture
components but different mode proportions. I.e., PX and
PY both belong to PG,k. In this case, depending on the
difference between π(1) and π(2), the Wasserstein distance
between the two distributions can be arbitrarily large. Thus,
using the Wasserstein distance, we can only conclude that
the two distributions are different. In some applications,

Algorithm 1 Optimizatizing Normalized Wasserstein
1: Training iterations = Niter
2: Critic iterations = Ncritic
3: for t = 1 : Niter do
4: Sample minibatch x ∼ PX , y ∼ PY
5: Sample minibatch z ∼ N (0, 1)
6: Compute Normalized Wasserstein as

NW = E[D1(x)]− E[
∑
i

π
(1)
i D1(Gi(z))]+

E[D2(y)]− E[
∑
i

π
(2)
i D2(Gi(z))]

7: for k = 1 : Ncritic do
8: Maximize NW w.r.t D1 and D2

9: Minimize NW w.r.t π̃(1) and π̃(2)

10: end for
11: Minimize NW w.r.t G
12: end for

it can be informative to have a test that determines if two
distributions differ only in mode proportions. We propose
a test based on a combination of Wasserstein and the NW
measure for this task. This procedure is shown in Table. 1.
We note that computation of p-values for the proposed test
is beyond the scope of this paper.

We demonstrate this test on 2D Mixture of Gaussians.
We perform experiments on two settings, each involving
two datasetsD1 andD2, which are mixtures of 8 Gaussians:

Setting 1: Both D1 and D2 have same mode compo-
nents, with the ith mode located at (r cos(2πi8), r sin(2πi8)).

Setting 2: D1 and D2 have shifted mode
components. The ith mode of D1 is located at
(r cos(2πi8), r sin(2πi8)), while the ith mode of D2 is
located at (r cos(2πi+π8), r sin(2πi+π8)).

In both the settings, the mode fraction ofD1 is πi = i+2
52 ,

and that ofD2 is πi = 11−i
52 . We use 2, 000 data points from

D1 and D2 to compute Wasserstein distance and the NW
measure in primal form by solving a linear program. The
computed distance values are reported in Table 2. In setting
1, we observe that the Wasserstein distance is large while
the NW measure is small. Thus, one can conclude that the
two distributions differ only in mode proportions. In setting
2, both Wasserstein and NW measures are large. Thus, in
this case, distributions differ in mixture components as well.

5. Additional results

5.1. CIFAR-10

We present the results of training NWGAN on CIFAR-
10 dataset. We use WGAN-GP [3] with Resnet-based gen-
erator and discriminator models as our baseline method.

The proposed NWGAN was trained with k = 4 modes us-
ing the same network architectures as the baseline. Sam-
ple generations produced by each mode of the NWGAN is
shown in Figure 1. We observe that each generator model
captures distinct variations of the entire dataset, thereby ap-
proximately disentangling different modes in input images.
For quantitative evaluation, we compute inception scores
for the baseline and the proposed NWGAN. The inception
score for the baseline model is 7.56, whereas our model
achieved an improved score of 7.89.

5.2. Domain adaptation under uniform mode pro-
portions

In this section, we present results on domain adaptation
on mode-balanced VISDA dataset – source and target do-
mains contain 3 classes - aeroplane, horse and truck with
uniform mode proportion. The results of performing adap-
tation using NW measure in comparison with classical dis-
tance measures are reported in Table 4. We observe that
NW measure performs on-par with the compared methods
on this dataset. This experiment demonstrates the effec-
tiveness of NW measure on a range of settings – when the
source and target datasets are balanced in mode proportions,
NW becomes equivalent to Wasserstein distance and mini-
mizing it is no worse than minimizing the classical distance
measures. On the other hand, when mode proportions of
source and target domains differ, NW measure renormal-
izes the mode proportions and effectively performs domain
adaptation. This illustrates the usefulness of NW measure
in domain adaptation problems.

5.3. Adversarial clustering: Quantitative metrics

• Cluster purity: Cluster purity measures the extent to
which clusters are consistent i.e., if each cluster con-
stains similar points or not. To compute the cluster pu-
rity, the cardinality of the majority class is computed
for each cluster, and summed over and divided by the
total number of samples.

• ARI - Adjusted Rand Index: The rand index computes
the similarity measure between two clusters by con-
sidering all pairs of samples, and counting the pairs
of samples having the same cluster in the ground-truth
and predicted cluster assignments. Adjusted rand in-
dex makes sure that ARI score is in the range (0, 1)

• NMI - Normalized Mutual Information: NMI is the
normalized version of the mutual information between
the predicted and the ground truth cluster assignments.

5.4. Adversarial clustering of CIFAR+CelebA

In this section, we show the results of performing ad-
versarial clustering on a mixture of CIFAR-10 and CelebA
datasets. The same dataset presented in Section 3.2 of the

Table 1. Comparative analysis of two mixture distributions
Wasserstein

distance
NW

measure Conclusion
High High Distributions differ in mode components

High Low
Distributions have the same components,

but differ in mode proportions
Low Low Distributions are the same

Figure 1. Sample generations produced by the proposed NWGAN trained on CIFAR-10 with k = 4 generator modes.

Table 2. Hypothesis test between two MOG - D1 and D2

Setting Wasserstein Distance NW measure
Setting 1 1.51 0.06
Setting 2 1.56 0.44

main paper is used in this experiment (i.e) the dataset con-
tains CIFAR-10 and CelebA samples in 1 : 2 mode pro-
portion. NWGAN was trained with 2 modes - each em-
ploying Resnet based generator-discriminator architectures
(same architectures and hyper-parameters used in Section
3.2 of main paper). Quantitative evaluation of our approach
in comparison with k − means is given in Table 5. We
observe that our approach outperforms k −means cluster-
ing. However, the clustering quality is poorer that the one
obtained on imbalanced MNIST dataset. This is because
the samples generated on MNIST dataset had much better
quality than the one produced on CIFAR-10. So, as long as
the underlying GAN model produces good generations, our
adversarial clustering algorithm performs well.

6. Architecture and hyper-parameters
Implementation details including model architectures

and hyperparameters are presented in this section:

6.1. Mixture models for Generative Adversarial
Networks (GANs)

6.1.1 Mixture of Gaussians

As discussed in Section 3.1 of the main paper, the input
dataset is a mixture of 8 Gaussians with varying mode pro-
portion. Normalized Wasserstein GAN was trained with

linear generator and non-linear discriminator models using
the architectures and hyper-parameters as presented in Ta-
ble 6. The architecture used for training Vanilla WGAN
is provided in Table 7. The same architecture is used for
MGAN, however we do not use theReLU non-linearities in
the Generator function (to make the generator affine so that
the model is comparable to ours). For WGAN and MGAN,
we use the hyper-parameter details as provided in the re-
spective papers – [3] and [4].

6.1.2 CIFAR-10 + CelebA

To train models on CIFAR-10 + CelebA dataset (Section
3.2 of the main paper), we used the Resnet architectures of
WGAN-GP [3] with the same hyper-parameter configura-
tion for the generator and the discriminator networks. In
Normalized WGAN, the learning rate of mode proportion
π was 5 times the learning rate of the discriminator.

6.2. Domain adaptation for mixture distributions

6.2.1 Digit classification

For MNIST→MNIST-M experiments (Section 4.1.1 of the
main paper), following [2], a modified Lenet architecture
was used for feature network, and a MLP network was
used for domain classifier. The architectures and hyper-
parameters used in our method are given in Table 8. The
same architectures are used for the compared approaches -
Source only, DANN and Wasserstein.

Table 3. MNIST → MNIST-M settings
Config 3 modes 5 modes 10 modes
Classes {1, 4, 8} {0, 2, 4, 6, 8} {0, 1, . . . 9}

Proportion of
source samples

{0.63, 0.31,
0.06}

{0.33, 0.26, 0.2,
0.13, 0.06}

{0.15, 0.15, 0.15, 0.12, 0.12
0.11, 0.05, 0.05, 0.05, 0.05}

Proportion of
target samples

{0.06, 0.31,
0.63}

{0.06, 0.13, 0.2,
0.26, 0.33}

{0.05, 0.05, 0.05, 0.05, 0.11
0.12, 0.12, 0.15, 0.15, 0.15}

Table 4. Domain adaptation on mode-balanced datasets: VISDA.
Average classification accuracies averaged over 5 runs are reported

Method Classification accuracy (in %)
Source only 63.24

DANN 84.71
Wasserstein 90.08

Normalized Wasserstein 90.72

Table 5. Performance of clustering algorithms on CIFAR+CelebA
dataset

Method Cluster Purity NMI ARI
k-means 0.667 0.038 0.049

Normalized Wasserstein 0.870 0.505 0.547

6.2.2 VISDA

For the experiments on VISDA dataset with three classes
(Section 4.1.2 of the main paper), the architectures and
hyper-parameters used in our method are given in Ta-
ble 9. The same architectures are used for the compared
approaches: source only, Wasserstein and DANN.

6.2.3 Domain adaptation for Image denoising

The architectures and hyper-parameters used in our method
for image denoising experiment (Section 4.2 of the main pa-
per) are presented in Table 10. To perform adaptation using
Normalized Wasserstein measure, we need to train the in-
termediate distributions PG,π(1) and PG,π(2) (as discussed
in Section 2, 4.2 of the main paper). We denote the genera-
tor and discriminator models corresponding to PG,π(1) and
PG,π(2) as Generator (RW) and Discriminator (RW) respec-
tively. In practice, we noticed that the Generator (RW) and
Discriminator (RW) models need to be trained for a certain
number of iterations first (which we call initial iterations)
before performing adaptation. So, for these initial itera-
tions, we set the adaptation parameter λ as 0. Note that the
encoder, decoder, generator (RW) and discriminator (RW)
models are trained during this phase, but the adaptation is
not performed. After these initial iterations, we turn the
adaptation term on. The hyperparameters and model archi-
tectures are given in Table 10. The same architectures are
used for Source only and Wasserstein.

6.3. Adversarial clustering

For adversarial clustering in imbalanced MNIST dataset
(Section 5 of the main paper), the architectures and hyper-
parameters used are given in Table 11.

6.4. Hypothesis testing

For hypothesis testing experiment (Section 6 of the main
paper), the same model architectures and hyper-parameters
as the MOG experiment (Table 6) was used.

References
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein GAN. arXiv preprint arXiv:1701.07875, 2017.
2

[2] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In Francis Bach and David
Blei, editors, Proceedings of the 32nd International Confer-
ence on Machine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, pages 1180–1189, Lille, France,
07–09 Jul 2015. PMLR. 4

[3] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron Courville. Improved training of
Wasserstein GANs. arXiv preprint arXiv:1704.00028, 2017.
3, 4

[4] Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung.
MGAN: training generative adversarial nets with multiple
generators. 2018. 4

Table 6. Architectures and hyper-parameters: Mixture of Gaussians with Normalized Wasserstein GAN
Generator Discriminator

Linear(2→ 64) Linear(2→ 128)
Linear(64→ 64) LeakyReLU(0.2)
Linear(64→ 64) Linear(128→ 128)
Linear(64→ 2) LeakyReLU(0.2)

Linear(128→ 2)
Hyperparameters

Discriminator learning rate 0.00005
Generator learning rate 0.00005

π learning rate 0.01
Batch size 1024
Optimizer RMSProp

Number of critic iters 10
Weight clip [−0.003, 0.003]

Table 7. Architectures: Mixture of Gaussians with vanilla WGAN model
Generator Discriminator

Linear(2→ 512) + ReLU Linear(2→ 512) + ReLU
Linear(512→ 512) + ReLU Linear(512→ 512) + ReLU
Linear(512→ 512) + ReLU Linear(512→ 512) + ReLU

Linear(512→ 2) Linear(512→ 2)

Table 8. Architectures and hyper-parameters: Domain adaptation for MNIST→MNIST-M experiments
Feature network

Conv(3→ 32, 5× 5 kernel) + ReLU + MaxPool(2)
Conv(32→ 48, 5× 5 kernel) + ReLU + MaxPool(2)
Domain discriminator Classifier

Linear(768→ 100) + ReLU Linear(768→ 100) + ReLU
Linear(100→ 1) Linear(100→ 100) + ReLU

Linear(100→ 10)
Hyperparameters

Feature network learning rate 0.0002
Discriminator learning rate 0.0002

Classifier learning rate 0.0002
π learning rate 0.0005

Batch size 128
Optimizer Adam

Number of critic iters 10
Weight clipping value [−0.01, 0.01]

λ 1

Table 9. Architectures and hyper-parameters: Domain adaptation on VISDA dataset
Feature network

Resnet-18 model pretrained on ImageNet
till the penultimate layer

Domain discriminator Classifier
Linear(512→ 512) + LeakyReLU(0.2) Linear(512→ 3)
Linear(512→ 512) + LeakyReLU(0.2)
Linear(512→ 512) + LeakyReLU(0.2)

Linear(512→ 1)
Hyperparameters

Feature network learning rate 0.000001
Discriminator learning rate 0.00001

Classifier learning rate 0.00001
π learning rate 0.0001

Batch size 128
Optimizer Adam

Number of critic iters 10
Weight clipping value [−0.01, 0.01]

λ 1

Table 10. Architectures and hyper-parameters: Domain adaptation for image denoising experiment
Encoder Decoder

Conv(3→ 64, 3× 3 kernel) Linear(2→ 128)
+ReLU + MaxPool(2) Conv(128→ 64, 3× 3 kernel)

Conv(64→ 128, 3× 3 kernel) + ReLU + Upsample(2)
+ReLU + MaxPool(2) Conv(64→ 64, 4× 4 kernel)

Conv(128→ 128, 3× 3 kernel) + ReLU + Upsample(4)
+ReLU + MaxPool(2) Conv(64→ 3, 3× 3 kernel)

Conv(128→ 128, 3× 3 kernel)
Linear(128→ 2)

Domain discriminator
Linear(2→ 64) + ReLU
Linear(64→ 64) + ReLU

Linear(64→ 1)
Generator (RW) Discriminator (RW)
Linear(2→ 128) Linear(2→ 128) + ReLU

Linear(128→ 128) Linear(128→ 128) + ReLU
Linear(128→ 2) Linear(128→ 1)

Hyperparameters
Encoder learning rate 0.0002
Decoder learning rate 0.0002

Domain Discriminator learning rate 0.0002
Generator (RW) learning rate 0.0002

Discriminator (RW) learning rate 0.0002
π learning rate 0.0005

Batch size 128
Optimizer Adam

Number of critic iters 5
Initial iters 5000

Weight clipping value [−0.01, 0.01]
λ 1

Table 11. Architectures and hyper-parameters: Mixture models on imbalanced-MNIST3 dataset
Generator Discriminator

ConvTranspose(100→ 256, 4× 4 kernel, stride 1) Spectralnorm(Conv(1→ 64, 4× 4 kernel, stride 2))
Batchnorm + ReLU LeakyReLU(0.2)

ConvTranspose(256→ 128, 4× 4 kernel, stride 2) Spectralnorm(Conv(64→ 128, 4× 4 kernel, stride 2))
Batchnorm + ReLU LeakyReLU(0.2)

ConvTranspose(128→ 64, 4× 4 kernel, stride 2) Spectralnorm(Conv(128→ 256, 4× 4 kernel, stride 2))
Batchnorm + ReLU LeakyReLU(0.2)

ConvTranspose(64→ 1, 4× 4 kernel, stride 2) Spectralnorm(Conv(256→ 1, 4× 4 kernel, stride 1))
Tanh()

Hyperparameters
Discriminator learning rate 0.00005

Generator learning rate 0.0001
π learning rate 0.001

Batch size 64
Optimizer RMSProp

Number of critic iters 5
Weight clip [−0.01, 0.01]

λreg 0.01

