
Supplementary Material for Teacher Guided Architecture Search

Pouya Bashivan
Department of Brain and Cognitive Sciences

McGovern Institute for Brain Research
MIT

bashivan@mit.edu

Mark Tensen
University of Amsterdam

mark.tensen@student.uva.nl

James J DiCarlo
Department of Brain and Cognitive Sciences and

McGovern Institute for Brain Research
MIT

dicarlo@mit.edu

Hyperparameter Search with Reinforcement
Learning (RL)

We follow the method proposed by [14] to learn the
probability of hyperparameter choices (X = x1, x2, ..., xn)
that maximize the unknown but observable reward func-
tion f : X → R. A 2-layer long short-term memory
(LSTM) is used as the controller that chooses each hyperpa-
rameter in the network at every unrolling step. The LSTM
network, models the conditional probability distribution of
optimal hyperparameter choices as a function of all previ-
ous choices P (xj |x1, x2, ..., xj−1, θ) in which θ is the set
of all tunable parameters in the LSTM network. Since a
differentiable loss function is not known for this problem,
usual maximum likelihood methods could not be used in
this setting. Instead parameters are optimized through re-
inforcement learning based approaches (e.g. REINFORCE
[12]) by increasing the likelihood of each hyperparameter
choice according to the reward (score) computed for each
sampled network (or a batch of sampled networks). Rel-
ative to [14], we made two modifications. First, since the
order of dependencies between different hyperparameters
in each layer/block is arbitrary, we ran the LSTM controller
for one step per layer (instead of once per hyper-parameter).
This results in shorter choice sequences generated by the
LSTM controller and therefore shorter sequence dependen-
cies. Second, we chose a Boltzman policy method for ac-
tion selection to allow the search to continue the exploration
throughout the search experiment. Hyperparameter values
were selected according to the probability distribution over
all action choices. Compared to ε-greedy method, follow-
ing the softmax policy reduces the likelihood of sub-optimal
actions throughout the training.

For each hyperparameter, choice probability is computed
using a linear transformation (e.g. WKh

,WNfilters
) from

LSTM output at the last layer (h2l ) followed by a softmax.
To reduce the number of tunable parameters and more gen-
eralization across layers, we used shared parameters be-
tween layers.

P̂l,x = softmax(WT
t h

2
l ) (1)

l ∈ {1, 2, ..., Nl}
t ∈ {Kh,Kw, Nfilters, stride, normalization, activation}

Probability distribution over possible number of layers
is formulated as a function of the first output value of the
LSTM (P̂Nl

= softmax(WT
Nl
h20)). In addition to layers’

hyperparameters we also search over layers’ connections.
Similar to the approach taken in [14] we formulated the
probability of a connection between layer i and j as a func-
tion of the state of the LSTM at each of these layers (h2i , h

2
j ).

P̂ c
i,j = sigmoid(WT

srch
2
i +WT

dsth
2
j ) (2)

where P̂ c
i,j represents the probability of a connection be-

tween layer i output to j’s input. Wsrc and Wdst are tunable
parameters that link the hidden state of LSTM to probability
of a connection existing between the two layers.

Hyperparameter Search with Tree of Parzen
Estimators (TPE)

Sequential Model-Based Optimization (SMBO) [7] ap-
proaches are numerical methods used to optimize a given
score function f : X → R. They are usually applied in set-
tings where evaluating the function at each point is costly

1



and it’s important to minimize the number of evaluations to
reach the optimal value. Various SMBO approaches were
previously proposed [3, 1] and some have been used for
hyperparameter optimization in neural networks [2, 4, 9].
Bayesian SMBO approaches model the posterior or condi-
tional probability distribution of values (scores) and use a
criteria to iteratively suggest new samples while the prob-
ability distribution is updated to incorporate the history of
previous sample tuples (x, y) where x = (x(1), ..., x(n)) is
a sample hyperparameter vector and y is the received score
(or loss). Here we adopted Tree of Parzen Estimators (TPE)
because of its intuitiveness and successful application in
various domains with high dimensional spaces. Unlike most
other Bayesian SMBO methods that directly model the pos-
terior distribution of values P (y|x), TPE models the condi-
tional distribution P (x|y) with two non-parametric densi-
ties.

P (x|y) =

{
l(x) ∀ y ≤ y∗

g(x) ∀ y > y∗
(3)

We consider y to be the loss value which we are trying to
minimize (e.g. error rate of a network on a given task). For
simplicity, value of y∗ could be taken as some quantile of
values observed so far (γ). At every iteration, TPE fits a
kernel density estimator with Gaussian kernels to subset of
observed samples with lowest loss value (l(x)) and another
to those with highest loss (g(x)). Ideally we want to find
x that minimizes y. Expected Improvement (EI) is the ex-
pected reduction in f(x) compared to threshold y∗ under
current model of f . Maximizing EI, encourages the model
to further explore parts of the space which lead to lower
loss values and can be used to suggest new hyperparameter
samples.

EI(x) =

∫ y∗

−∞
(y∗ − y)P (y|x)dy

=

∫ y∗

−∞ (y∗ − y)P (x|y)P (y)dy
P (x)

(4)

Given that P (y < y∗) = γ and P (x|y) = l(x) for
y < y∗, it has been shown [2] that EI would be proportional

to
(
γ + g(x)

l(x) (1 − γ)
)−1

. Therefore the EI criterion can
be maximized by taking samples with minimum probability
under g(x) and maximum probability under l(x). For sim-
plicity, at every iteration nd samples are drawn from l(x)
and the hyperparameter choice with lowest g(x)/l(x) ratio
is suggested as the next sample.

Alternative Teacher Network - NASNet
We examined the effect of choosing an alternative

teacher network, namely NASNet and performed a set of
analyses similar to those done on ResNet. We observed

that similar to ResNet, early layers are better predictors of
the mature performance during early stages of the training.
With additional training, the premature performance be-
comes a better single-predictor of the mature performance
but during most of the training the combined P+TG score
best predicts the mature performance (Figure 1-left). We
also varied the “TG” weight factor and found that compared
to ResNet, higher α values led to increased gains in predict-
ing the mature performance. α = 5 was used to compute
the P+TG scores shown in Figure 1.

Overall, we found that NASNet representations were sig-
nificantly better predictors of mature performance for all
evaluated time points during training when compared to
ResNet (Figure 1-right).

Datasets and Preprocessing

CIFAR: We followed the standard image preprocessing
for CIFAR labeled dataset, a 100-way object classification
task [6]. Images were zero-padded to size 40 × 40. A ran-
dom crop of size 32 × 32 was selected, randomly flipped
along the vertical axis, and standardized over all pixel val-
ues in each image to have zero mean and standard deviation
of 1. We split the training set into training set (45,000 im-
ages) and a validation set (5,000 images) by random selec-
tion.

Imagenet: We used standard VGG preprocessing [11]
on images from Imagenet training set. During training, im-
ages were resized to have their smaller side match a random
number between 256 and 512 while preserving the aspect
ratio. A random crop of size 224 was then cut out from the
image and randomly flipped along the central vertical axis.
The central crop of size 224 was used for evaluation.

Details of Search Algorithms

RL Search Algorithm: We used a two-layer LSTM
with 32 hidden units in each layer as the controller. Parame-
ters were trained using Adam optimizer [8] with a batch size
of 5. For all searches, the learning rate was 0.001, and the
Adam first momentum coefficient was zero β1 = 0. Gradi-
ents were clipped according to global gradient norm with a
clipping value of 1 [10].

TPE Search Algorithm: We used the python imple-
mentation of TPE hyperparameter search from HyperOpt
package [5]. We employed the linear sample forgetting as
suggested in [4] and set the threshold y∗ =

√
N/4 for the

set of N observed samples. Each search run started with 20
random samples and continued with TPE suggestion algo-
rithm. At every iteration, nd = 24 draws were taken from
l(x) and choice of hyperparameter argminig(xi)/l(xi)
was used as the next sample (see section 3.3 in the main
text).



Figure 1. (top) Comparison of single layer and combined RDMs
with premature performance as predictors of mature performance
on NASNet. P+TG was computed using α = 5. (middle) Gain in
predicting the mature performance with varying TG weight. (bot-
tom) Comparison of combined RDM scores using two alternative
teacher models at various stages of training. α values of 1 and 5
were used for ResNet and NASNet respectively.

Experimental Details for Search in the Space
of Convolutional Networks

Search Space: Similar to [14] we defined the hy-
perparameter space as the following independent

choices for each layer: Nfilters ∈ [32, 64, 128],
(Kwidth,Kheight) ∈ [1, 3, 5, 7],Kstride ∈
[1, 2], activation ∈ [Identity,ReLU ], normalization ∈
[none,BN ]. In addition we searched over number of layers
(Nlayers ∈ [1, NL]) and possible connections between the
layers. In this space of CNNs, the input to every layer could
have originated from the input image or the output of any
of the previous layers. We considered two particular spaces
in our experiments that differed in the value of NL (=10 or
20).

CIFAR Training: Selected networks were trained on
CIFAR training set (45k samples) from random initial
weights using SGD with Nesterov momentum of 0.9 for 300
epochs on the training set. The initial learning rate was 0.1
and was divided by 10 after every 100 epochs. Mature per-
formance was then evaluated on the validation set (above).

Experimental Details for Search in the Space
of Convolutional Cells

Search Space: We used the same search space and net-
work generation procedure as in [15, 9] with the exception
that we added two extra hyperparameters which could force
each of the cell inputs (from previous cell or the one prior
to that) to be directly concatenated in the output of the cell
even if they were already connected to some of the blocks
in the cell. This extra hyperparameter choice was motivated
by the open-source implementation of NASNet at the time
of conducting the search experiments that contained similar
connections1.

Each cell receives two inputs which are the outputs of
the previous two cells. In early layers, the missing inputs
are substituted by the input image. Each cell consists of B
blocks with a prespecified structure. Each block receives
two inputs, an operation is applied on each input indepen-
dently and the results are added together to form the output
of the block. The search algorithm picks each of the op-
erations and inputs for every block in the cell. Operations
are selected from a pool of 8 possible choices: {identity,
3 × 3 average pooling, 3 × 3 max pooling, 3 × 3 dilated
convolution, 1 × 7 followed by 7 × 1 convolution, 3 × 3
depthwise-separable convolution, 5×5 depthwise-separable
convolution, 7× 7 depthwise-separable convolution}.

Imagenet Training: For our Imagenet training experi-
ments, we used a batch size of 128 images of size 224×224
pixels. Each batch was divided between two GPUs and the
gradients computed on each half were averaged before up-
dating the weights. We used an initial learning rate of 0.1
with a decay of 0.1 after every 15 epochs. Each network
was trained for 40 epochs on the Imagenet training set and

1available at https://github.com/tensorflow/models/
blob/376dc8dd0999e6333514bcb8a6beef2b5b1bb8da/
research/slim/nets/nasnet/nasnet_utils.py

https://github.com/tensorflow/models/blob/376dc8dd0999e6333514bcb8a6beef2b5b1bb8da/research/slim/nets/nasnet/nasnet_utils.py
https://github.com/tensorflow/models/blob/376dc8dd0999e6333514bcb8a6beef2b5b1bb8da/research/slim/nets/nasnet/nasnet_utils.py
https://github.com/tensorflow/models/blob/376dc8dd0999e6333514bcb8a6beef2b5b1bb8da/research/slim/nets/nasnet/nasnet_utils.py


validated on the central crop for all images from Imagenet
validation. No dropout or drop-path was used when training
the networks. RMSProp optimizer with a decay rate of 0.9
and momentum rate of 0.9 was used during training and gra-
dients were normalized by their global norm when the norm
value exceeded a threshold of 10. L2-norm regularizer was
applied on all trainable weights with a weight decay rate of
4× 10−5.

CIFAR Training: The networks were trained on CI-
FAR10/CIFAR100 training set including all 50,000 samples
for 600 epochs with an initial learning rate of 0.025 and a
single period cosine decay [15]. We used SGD with Nes-
terov momentum rate of 0.9. We used L2 weight decay on
all trainable weights with a rate of 5× 10−4. Gradient clip-
ping similar to that used for Imagenet and a threshold of 5
was used.

Best Discovered Convolutional Cell: Figure 2 shows
the structure of the best discovered cell by TG-SAGE on
CIFAR100. Only four (out of ten) operations contain train-
able weights and there are several bypass connections in the
cell.

Figure 2. SAGENet - Structure of the best cell discovered during
the search with TG-SAGE.

Neural Measurements from Macaque Mon-
keys

We used a dataset of neural spiking activity for a popu-
lation of 296 neural sites in two awake behaving macaque
monkeys in response to 5760 images [13]. Neural data were
collected using parallel microelectrode arrays that were
chronically implanted on the cortical surface in area V4 and
IT. Fixating animals were presented with images for 100ms,
and the neural response patterns were obtained by averaging
the spike counts in the time window of 70-170ms post stim-
ulus onset. To enhance the signal-to-noise ratio, each image
was presented to each monkey between 21-50 times and

the average response pattern across all presentation were
considered for each image. The 296 recorded sites were
partitioned into three cortical regions (V4, posterior-IT, and
anterior-IT) and a RDM was calculated for each region.

The image set consisted of a total of 5760 images. Each
image contained a 3D rendered object placed on an uncor-
related natural background. The rendered objects were se-
lected from a battery of 64 objects from 8 categories (an-
imals, boats, cars, chairs, faces, fruits, planes, and tables)
with 8 objects per category. The images were generated to
include large variations in position, size, and pose of the
objects and were shown within the central 8◦ of monkeys’
visual field. Some example images are illustrated in Figure-
3.

Planes Boats Cars Chairs

FruitsAnimalsTablesFaces

Figure 3. Example images from each of the eight object categories
that were used to record neural responses.

Implementation Details
Because of heavy computational load associated with

training neural networks and in particular in large-scale
model training, we needed a scalable and efficient frame-
work to facilitate the search procedure. We implemented
our proposed framework in four main modules: (i) explorer,
(ii) trainer, (iii) evaluator, and (iv) tracker. The explorer
module contained the search algorithm. The trainer module
optimized the parameters of the proposed architecture on
an object recognition task using a large-scale image dataset.
Once the training job was completed, the evaluator mod-
ule extracted the network activations in response to a set of
predetermined image-set and assessed the similarity of rep-
resentations to the teacher benchmarks. The tracker module
consisted of a database which tracked the details and sta-
tus of every proposed architectures and acted as a bridge
between all three modules.

During the search experiments, the explorer module pro-
poses new candidate architectures and records the details in
the database (tracker module). It also continuously mon-
itors the database for newly evaluated networks. Upon
receiving adequate number of samples (i.e. when a new



Figure 4. Implementation of a distributed framework for conduct-
ing architecture search.

batch is complete), it updates its parameters. Active work-
ers periodically monitor the database for newly added un-
trained models, and train the architecture on the prespec-
ified dataset. After the training phase is completed, the
evaluator module extracts the features from all layers in re-
sponse to the validation set and computes the premature-
performance and RDM consistencies and writes back the
results in the database. The trainer and evaluator modules
are then freed up to process new candidate networks. This
framework enabled us to run many worker programs on sev-
eral clusters speeding up the search procedure. An overview
of the implemented framework is illustrated in Figure 4. Ex-
periments reported in this paper were run on three server
clusters with up to 40 GPUs in total.

References
[1] R. Bardenet and B. Kegl. Surrogating the surrogate: ac-

celerating gaussian-process-based global optimization with a
mixture cross-entropy algorithm. In 27th International Con-
ference on Machine Learning (ICML 2010), pages 55–62.
Omnipress, 2010. 2

[2] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl. Algorithms
for Hyper-Parameter Optimization. pages 1–9, 2011. 2

[3] J. Bergstra, N. Pinto, and D. Cox. Machine learning for pre-
dictive auto-tuning with boosted regression trees. In Inno-
vative Parallel Computing (InPar), 2012, pages 1–9. IEEE,
2012. 2

[4] J. Bergstra, D. Yamins, and D. D. Cox. Making a Science of
Model Search. pages 1–11, 2012. 2

[5] J. Bergstra, D. Yamins, and D. D. Cox. Hyperopt: A python
library for optimizing the hyperparameters of machine learn-
ing algorithms. In Proceedings of the 12th Python in Science
Conference, pages 13–20. Citeseer, 2013. 2

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning
for Image Recognition. Arxiv.Org, 7(3):171–180, 2015. 2

[7] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential
model-based optimization for general algorithm configura-
tion. In International Conference on Learning and Intelli-
gent Optimization, pages 507–523. Springer, 2011. 1

[8] D. Kingma and J. Ba. Adam: A Method for Stochastic Op-
timization. International Conference on Learning Represen-
tations, pages 1–13, 2014. 2

[9] C. Liu, B. Zoph, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy. Progressive Neural Ar-
chitecture Search. 2017. 2, 3

[10] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of
training Recurrent Neural Networks. (2), 2012. 2

[11] K. Simonyan and A. Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. pages 1–10,
2014. 2

[12] R. J. Williams. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992. 1

[13] D. L. K. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon,
D. Seibert, and J. J. DiCarlo. Performance-optimized hi-
erarchical models predict neural responses in higher visual
cortex. Proceedings of the National Academy of Sciences,
111(23):8619–8624, 2014. 4

[14] B. Zoph and Q. V. Le. Neural architecture Search With rein-
forcement learning. ICLR, 2017. 1, 3

[15] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning
Transferable Architectures for Scalable Image Recognition.
10, 2017. 3, 4


