
A. Appendix

A.1. Experimental details

CIFAR-100 Given the low resolution of CIFAR-100 im-
ages, we do not downsample feature maps before the at-
tention operation and instead resort to a smaller batch size.
We train all networks for 500 epochs using synchronous
SGD with momentum 0.9 distributed across 8 TESLA V100
GPUs. The learning rate is linearly scaled from 0 to
0.2B/256, where B is the total batch size, for the first 5%
training epochs and then annealed with cosine decay [30].
We use standard CIFAR preprocessing: mean normalizing,
random flipping and cropping [55, 10, 48]. For the non-
augmented architectures, we use a batch size of 1024 and
a weight decay of 2e-4. When using Attention Augmenta-
tion, the batch size is set to 256 and the weight decay is set
to 5e-4.

ImageNet classification with ResNet We train all
ResNet architectures for 100 epochs using synchronous
SGD with momentum 0.9 across 8 TESLA V100 GPUs and
weight decay of 1e-4. We use the largest batch size per
worker B 2 {32, 64, 128, 256} that fits in a minibatch. The
initial learning rate is scaled linearly according to the total
batch size using a base learning rate of 0.128 for total batch
size of 256. During training, we linearly scale the learning
rate from 0 to this value for the first 5% of training epochs
and divide it by 10 at epochs 30, 60, 80 and 90. We use
standard Inception data augmentation as described in [41].

ImageNet classification with MnasNet We follow the
training setup described in [42] and train all networks for
350 epochs with the RMSProp optimizer using exponential
learning rate decay. When training our augmented Mnas-
Nets, we divide the learning rate by 2 and adjusted the learn-
ing rate decay so that the final learning rate stays the same.

Object Detection with COCO dataset We follow the
setup described in [26, 11] and train the RetinaNet from
scratch for 150 epochs without using ImageNet pretraining
for the ResNet backbone. We use the preprocessing pipeline
described in [26]. We apply multiscale jitter, randomly re-
size images from [512, 768] and crop to a max dimension
of 640 during training. All images are horizontally flipped
with a 50% probability.

A.2. Computational & Memory costs

Table 9 provides the breakdown of self-attention related
computational costs per image. All parameter counts and
FLOPS are obtained with the TensorFlow Profiler. These
consider all parameters/computations, including the ones
needed to compute the attention maps, thus allowing for a
fair comparison. Storing attention maps in each layer in-
duces a memory cost of Nh(HW )2 bfloat16. At infer-

ence, the memory cost for storing attention maps is only
1.2% of the memory required to store model parameters
(49MB).

Layer Memory Params FLOPS
{Stage 2 - H=W=14} * 4 600KB 43k 22M
{Stage 3 - H=W=14} * 6 600KB 90k 40M
{Stage 4 - H=W=7} * 3 37.5KB 190k 19M
Training 6MB (total) 1.3M 390M
Inference 600KB (max) 1.3M 390M

Table 9. Computational costs associated with self-attention in the
forward pass of the ResNet50. During inference, we only consider
the largest memory cost since activations are not stored.

Figures 5 and 6 show the accuracies of our attention
augmented networks across FLOPS counts, which correlate
with running times across hardware platforms.

Figure 5. ImageNet top-1 accuracy as a function of computational
demand for variety of ResNet architectures [14]. From left to right:
ResNet-34, ResNet-50, ResNet-101 and ResNet-152.

Figure 6. ImageNet top-1 accuracy as a function of computational
demand for MnasNet (black) and Attention-Augmented-MnasNet
(red) with depth multipliers 0.75, 1.0, 1.25 and 1.4.



A.3. 2D Relative Self-Attention implementation

While our method is simple and only requires matrix
multiplication, addition and the softmax operation (Equa-
tions 3 and 4), our implementation relies on non-trivial op-
erations (e.g. tiling, transposing and reshaping) because
no low-level kernels currently exist for hardware platforms.
Future work may develop specialized kernels as previously
done for convolutions. Therefore, we believe that current
latency times (Table 2) reflect the lack of dedicated engi-
neering as opposed to inefficiency in the proposed method.

def shape list(x):

"""Return list of dims, statically where possible."""

static = x.get shape().as list()

shape = tf.shape(x)

ret = []

for i, static dim in enumerate(static):

dim = static dim or shape[i]

ret.append(dim)

return ret

def split heads 2d(inputs, Nh):

"""Split channels into multiple heads."""

B, H, W, d = shape list(inputs)

ret shape = [B, H, W, Nh, d // Nh]

split = tf.reshape(inputs, ret shape)

return tf.transpose(split, [0, 3, 1, 2, 4])

def combine heads 2d(inputs):

"""Combine heads (inverse of split heads 2d)."""

transposed = tf.transpose(inputs, [0, 2, 3, 1, 4])

Nh, channels = shape list(transposed)[�2:]

ret shape = shape list(transposed)[:�2] + [Nh ⇤ channels]

return tf.reshape(transposed, ret shape)

def rel to abs(x):

"""Converts tensor from relative to aboslute indexing."""

# [B, Nh, L, 2L�1]

B, Nh, L, = shape list(x)

# Pad to shift from relative to absolute indexing.

col pad = tf.zeros((B, Nh, L, 1))

x = tf.concat([x, col pad], axis=3)

flat x = tf.reshape(x, [B, Nh, L ⇤ 2 ⇤ L])

flat pad = tf.zeros((B, Nh, L�1))

flat x padded = tf.concat([flat x, flat pad], axis=2)

# Reshape and slice out the padded elements.

final x = tf.reshape(flat x padded, [B, Nh, L+1, 2⇤L�1])

final x = final x[:, :, :L, L�1:]

return final x

def relative logits 1d(q, rel k, H, W, Nh, transpose mask):

"""Compute relative logits along one dimenion."""

rel logits = tf.einsum(’bhxyd,md�>bhxym’, q, rel k)

# Collapse height and heads

rel logits = tf.reshape(

rel logits, [�1, Nh ⇤ H, W, 2 ⇤ W�1])

rel logits = rel to abs(rel logits)

# Shape it and tile height times

rel logits = tf.reshape(rel logits, [�1, Nh, H, W, W])

rel logits = tf.expand dims(rel logits, axis=3)

rel logits = tf.tile(rel logits, [1, 1, 1, H, 1, 1])

# Reshape for adding to the logits.

rel logits = tf.transpose(rel logits, transpose mask)

rel logits = tf.reshape(rel logits, [�1, Nh, H⇤W, H⇤W])

return rel logits

Figure 7. Helper functions in Tensorflow for 2D relative self-
attention.

def relative logits(q, H, W, Nh, dkh):

"""Compute relative logits."""

# Relative logits in width dimension first.

rel embeddings w = tf.get variable(

’r width’, shape=(2⇤W � 1, dkh),

initializer=tf.random normal initializer(dkh⇤⇤�0.5))

# [B, Nh, Hw, HW]

rel logits w = relative logits 1d(

q, rel embeddings w, H, W, Nh, [0, 1, 2, 4, 3, 5])

# Relative logits in height dimension next.

# For ease, we 1) transpose height and width,

# 2) repeat the above steps and

# 3) transpose to eventually put the logits

# in their right positions.

rel embeddings h = tf.get variable(

’r height’, shape=(2 ⇤ H � 1, dkh),

initializer=tf.random normal initializer(dkh⇤⇤�0.5))

# [B, Nh, Hw, HW]

rel logits h = relative logits 1d(

tf.transpose(q, [0, 1, 3, 2, 4]),

rel embeddings h, W, H, Nh, [0, 1, 4, 2, 5, 3])

return rel logits h, rel logits w

def self attention 2d(inputs, dk, dv, Nh, relative=True):

"""2d relative self�attention."""

, H, W, = shape list(inputs)

dkh = dk // Nh

dvh = dv // Nh

flatten hw = lambda x, d: tf.reshape(x, [�1, Nh, H⇤W, d])

# Compute q, k, v

kqv = tf.layers.conv2d(inputs, 2 ⇤ dk + dv, 1)

k, q, v = tf.split(kqv, [dk, dk, dv], axis=3)

q ⇤= dkh ⇤⇤ �0.5 # scaled dot�product

# After splitting, shape is [B, Nh, H, W, dkh or dvh]

q = split heads 2d(q, Nh)

k = split heads 2d(k, Nh)

v = split heads 2d(v, Nh)

# [B, Nh, HW, HW]

logits = tf.matmul(flatten hw(q, dkh), flatten hw(k, dkh),

transpose b=True)

if relative:

rel logits h, rel logits w = relative logits(q, H, W, Nh,

dkh)

logits += rel logits h

logits += rel logits w

weights = tf.nn.softmax(logits)

attn out = tf.matmul(weights, flatten hw(v, dvh))

attn out = tf.reshape(attn out, [�1, Nh, H, W, dvh])

attn out = combine heads 2d(attn out)

# Project heads

attn out = tf.layers.conv2d(attn out, dv, 1)

return attn out

def augmented conv2d(X, Fout, k, dk, dv, Nh, relative):

conv out = tf.layers.conv2d(inputs=X, filters=Fout � dv,

kernel size=k, padding=’same’)

attn out = self attention 2d(X, dk, dv, Nh, relative=

relative)

return tf.concat([conv out, attn out], axis=3)

Figure 8. Tensorflow code for 2D relative self-attention.



A.4. Attention visualizations.

In Figure 10, we present attention maps visualizations
for the input image shown in Figure 9. We see that attention
heads learn to specialize to different content and notably can
delineate object boundaries.

Figure 9. An input image. The red crosses indexed 1 to 4 represent
the pixel locations for which we show the attention maps in Figure
10.

Figure 10. Visualization of attention maps for an augmented con-
volution in the Attention-Augmented-ResNet50. Rows corre-
spond to the 8 different heads and columns correspond to the 4
pixel locations depicted in the input image (See Figure 9).


