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A. Proofs
A.1. Proof of Lemma 2
Proof. We show that conditions (i)-(iii) in Def. 1 are ful-
filled. Let i, j, ` 2 [k] be fixed. (i) We have that Xi1d =
1mi and Xi 2 Pmid imply that XiXT

i = Imi , so that
Xii = XiXT

i = Imi . (ii) Moreover, Xij = XiXT
j means

that XT
ij = (XiXT

j )T = XjXT
i = Xji. (iii) We have that

Xj 2 Pmjd implies XT
j Xj  Id. We can write

XijXj` = (XiX
T
j )(XjX

T
` ) (12)

= Xi (X
T
j Xj)| {z }
Id

XT
`  XiX

T
` = Xi` . ⌅

A.2. Proof of Lemma 4
Proof. With W being positive semidefinite, we can fac-
torise it as W = LTL. We have

0  kLUUTLT
� LV V TLT

k
2 (13)

= tr(LUUTLTLUUTLT ) + tr(LV V TLTLV V TLT )

� 2 tr(LUUTLTLV V TLT ) (14)

= tr(UTWUUTWU)� tr(UTWV V TWU) (15)

� tr(UTWV V TWU) + tr(V TWV V TWV )| {z }
0 by assumption

) tr(UTWUUTWU)� tr(UTWV V TWU) � 0 . ⌅

A.3. Proof of Proposition 3
Proof. We first look at a simpler variant of Problem (9),
where for a fixed Y we fix the inner term UUT in f to
Y Y T , define Z := WY Y TW , and relax U to its convex
hull C := conv(U), so that we obtain the problem

max
U2C

tr(UTZU) , min
U

◆C(U)| {z }
g(U)

� tr(UTZU)| {z }
h(U)

. (16)

Here, ◆C(U) is the (convex) indicator function of the set
C and tr(UTZU) is a convex quadratic function. We can
see that (16) is in the form of a difference of convex func-
tions and can thereby be tackled based on DC programming,
which for a given initial U0 repeatedly applies the following
update rules (see [29]):

Vt = rUh(Ut) = 2ZUt (17)
Ut+1 = arg min

U
g(U) � h(Ut) � hU�Ut, Vti (18)

= arg min
U2C

�hU, Vti . (19)

Since partial permutation matrices form the vertices of their
convex hull, see [32], and U (and C) are formed by the
Cartesian product of k partial permutation matrices (and
their convex hull), the set U forms the extreme points of
C. As the maximum of a linear objective over a compact
convex set is attained at its extreme points, we get

Ut+1 = arg min
U2U

�hU, Vti (20)

= arg min
U2U

kVt � Uk
2
F = projU (Vt) , (21)

where for the latter we used that hU, Ui=m (since any U 2

U is a binary matrix that has exactly a single element in each
row that is 1). As such, based on the descent properties of
DC programming (i.e. the sequence (g(Ut)�h(Ut))t=0,1,...

is decreasing, cf. [29], and thus (h(Ut))t=0,1,... is increas-
ing), so far we have seen that when applying the update
Ut+1 = projU (WY Y TWUt) we get that

tr(UT
t WY Y TWUt)  tr(UT

t+1WY Y TWUt+1) . (22)

In particular, this also holds for the choice Y := Ut, i.e.

f(Ut) = tr(UT
t WUtU

T
t WUt) (23)

 tr(UT
t+1WUtU

T
t WUt+1) . (24)

Since A is positive semidefinite by assumption, W =
WTAW is also positive semidefinite, and therefore we can
apply Lemma 4 to get

f(Ut)  tr(UT
t+1WUtU

T
t WUt+1) (25)

 tr(UT
t+1WUt+1U

T
t+1WUt+1) = f(Ut+1) . ⌅

A.4. Proof of Corollary 5
Proof. Since U is a finite set, f(U) is bounded above for
any U 2 U . Moreover, since for any t � 0 we have that
Ut 2 U (feasibility), the sequence (f(Ut))t=0,1,... produced
by Alg. 1 is bounded and increasing (Proposition 3), and
hence convergent. Since the Ut are discrete, convergence
implies that there exists a t0 2 N such that for all t � t0 it
holds that f(Ut) = f(Ut0). ⌅



B. Robustness Analysis
Here, we additionally present robustness evaluations. In

Fig. 7 we use our method to solve multi-matching problems
with a varying numbers of objects. We observe that with a
larger number of images the overall result quality improves
(since multi-matching problems with more objects contain
more information that can be leveraged for establishing a
better multi-matching).
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Figure 7. Robustness analysis of our method for different problem
sizes k using the WILLOW dataset.

In Fig. 8 we compare our method and
QuickMatch [48] with respect to the sensitivity to
outliers, where it can be seen that our method is more
robust. This can be explained by the fact that our method
considers geometric consistency and thereby is able to
disregard many spurious matchings.
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Figure 8. Sensitivity analysis of our method (solid lines)
vs. QuickMatch [48] (dashed lines) w.r.t. different outlier pro-
portions on three instances (colours) of the HiPPI dataset. Our
method is more robust compared to QuickMatch. Outlier points
were selected from the previously pruned points, as described in
Sec. 4.1, so the largest proportion that we could evaluate is limited.


