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This supplementary material for [1] provides additional
details and results. Section 1 derives the closed form ex-
pression of the filter gradient, employed in the optimizer
module. In section 2 we derive the application of the Jaco-
bian in order to compute the quantity h, employed in algo-
rithm 1 in the paper. In section 3 we provide detailed results
on the VOT2018 dataset, while in section 4, we provide de-
tailed results on the LaSOT dataset. We also provide addi-
tional details on the NFS, OTB100 and UAV123 datasets in
section 5. We analyze the impact when training with less
data in section 6. Finally, we provide a 2d visualization of
the learned functions parametrizing the discriminative loss
in section 7.

1. Closed-Form Expression for∇L

Here, we derive a closed-form expression for the gradi-
ent of the loss (1) in the main paper, also restated here,

L(f) =
1

|Strain|
∑

(x,c)∈Strain

‖r(s, c)‖2 + ‖λf‖2 . (1)

Here, s = x ∗ f is the score map obtained after convolving
the deep feature map xwith the target model f . The training
set is given by Strain = {(xj , cj)}nj=1. The residual function
r(s, c) is defined as (also eq. (2) in the paper),

r(s, c) = vc · (mcs+ (1−mc)max(0, s)− yc) . (2)

The gradient ∇L(f) of the loss (1) w.r.t. the filter coeffi-
cients f is then computed as,

∇L(f) = 2

|Strain|
∑

(x,c)∈Strain

(
∂rs,c
∂f

)T

rs,c + 2λ2f . (3)

Here, we have defined rs,c = r(s, c) and ∂rs,c
∂f corresponds

to the Jacobian of the residual function (2) w.r.t. the filter
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coefficients f . Using eq. (2) we obtain,

∂rs,c
∂f

= diag(vcmc)
∂s

∂f
+ diag ((1−mc) · 1s>0)

∂s

∂f

= diag(qc)
∂s

∂f
. (4)

Here, diag(qc) denotes a diagonal matrix containing the el-
ements in qc. Further, qc = vcmc + (1 − mc) · 1s>0 is
computed using only point-wise operations, where 1s>0 is
1 for positive s and 0 otherwise. Using eqs. (3) and (4) we
finally obtain,

∇L(f) = 2

|Strain|
∑

(x,c)∈Strain

(
∂s

∂f

)T

(qc · rs,c)+2λ2f . (5)

Here, · denotes the element-wise product. The multipli-
cation with the transposed Jacobian

(
∂s
∂f

)T
corresponds to

backpropagation of the input qc · rs,c through the convo-
lution layer f 7→ x ∗ f . This is implemented as a trans-
posed convolution with x. The closed-form expression (5)
is thus easily implemented using standard operations in a
deep learning library like PyTorch.

2. Calculation of h in Algorithm 1

In this section, we show the calculation of h =
J (i)∇L(f (i)), used when determining the optimal step
length α in Algorithm 1 in the main paper. Since we
only need the squared L2 norm of h in step length calcu-
lation, we will directly derive an expression for ‖h‖2 =

‖J (i)∇L(f (i))‖2. Here, J (i) = ∂ξ
∂f

∣∣∣
f(i)

is the Jacobian of

the residual vector ξ of loss (1), evaluated at the filter esti-
mate f (i). Not to be confused with the residual function (2),
the residual vector ξ is obtained as the concatenation of in-
dividual residuals ξj = r(xj ∗f, cj)/

√
n for j ∈ {1, . . . , n}

and ξj = λf for j = n+1. Here, n = |Strain| is the number
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of samples in Strain. Consequently, we get,

‖h‖2 =
∥∥∥J (i)∇L(f (i))

∥∥∥2 (6)

=

n+1∑
j=1

∥∥∥∥∥ ∂ξj∂f
∣∣∣∣
f(i)

∇L(f (i))

∥∥∥∥∥
2

=

n∑
j=1

∥∥∥∥∥ 1√
n

∂r(xj ∗ f, cj)
∂f

∣∣∣∣
f(i)

∇L(f (i))

∥∥∥∥∥
2

+
∥∥∥λ∇L(f (i))∥∥∥2

=
1

n

∑
(x,c)∈Strain

∥∥∥∥∥ ∂rs,c∂f

∣∣∣∣
f(i)

∇L(f (i))

∥∥∥∥∥
2

+
∥∥∥λ∇L(f (i))∥∥∥2 .

Using eqs. (6) and (4) we finally obtain,

‖h‖2 =
1

|Strain|
∑

(x,c)∈Strain

∥∥∥∥∥qc ·
(
∂s

∂f

∣∣∣∣
f(i)

∇L(f (i))

)∥∥∥∥∥
2

+

‖λ∇L(f (i))‖2

=
1

|Strain|
∑

(x,c)∈Strain

∥∥∥qc · (x ∗ ∇L(f (i)))∥∥∥2 +
‖λ∇L(f (i))‖2

As described in section 1, ∇L(f (i)) is computed using the
closed-form expression (5). The term ∂s

∂f

∣∣∣
f(i)
∇L(f (i))

corresponds to convolution of x with ∇L(f (i)), i.e.
∂s
∂f

∣∣∣
f(i)
∇L(f (i)) = x ∗ ∇L(f (i)). Thus, ‖h‖2 is com-

puted easily using standard operations from deep learning
libraries.

3. Detailed Results on VOT2018
In this section, we provide detailed results on the

VOT2018 [7] dataset. The VOT protocol evaluates the ex-
pected average overlap (EAO) between the tracker predic-
tions and the ground truth bounding boxes for different se-
quence lengths. The trackers are then ranked using the EAO
measure, which computes the average of the expected av-
erage overlaps over typical sequence lengths. We refer to
[8] for further details about the EAO computation. Fig-
ure 1 plots the expected average overlap for different se-
quence lengths on VOT2018 dataset. Our approach DiMP-
50 achieves the best EAO score of 0.440.

4. Detailed Results on LaSOT
Here, we provide the normalized precision plots on the

LaSOT [3] dataset. These are obtained in the following
manner. First, the normalized precision score Pnorm is com-
puted as the percentage of frames in which the distance be-
tween the target location predicted by the tracker and the
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Figure 1. Expected average overlap curve on the VOT2018 dataset,
showing the expected overlap between tracker prediction and
ground truth for different sequence lengths. The EAO measure,
computed as the average of the expected average overlap over typ-
ical sequence lengths (grey region in the plot), is shown in the
legend. Our approach achieves the best EAO score, outperforming
the previous best approach SiamRPN++ [9] with a relative gain of
6.3% in terms of EAO.

0 0.2 0.4

Location error threshold

0

10

20

30

40

50

60

70

80

P
re

ci
si

on

Normalized precision plots

[65.0] DiMP-50
[61.0] DiMP-18
[57.6] ATOM
[56.9] SiamRPN++
[46.0] MDNet
[45.3] VITAL
[42.0] SiamFC
[41.8] StructSiam
[40.5] DSiam
[33.8] ECO

Figure 2. Normalized precision plot on the LaSOT dataset. Both
our ResNet-18 and ResNet-50 versions outperform all previous
methods by significant margins.

ground truth, relative to the target size, is less than a certain
threshold. The normalized precision score over all the the
videos are then plotted over a range of thresholds [0, 0.5]
to obtain the normalized precision plots. The trackers are
ranked using the area under the resulting curve. Figure 2
shows the normalized precision plots over all 280 videos
in the LaSOT dataset. Both our ResNet-18 (DiMP-18)
and ResNet-50 (DiMP-50) versions outperform all previous
methods, achieving relative gains of 5.9% and 12.8% over
the previous best method, ATOM [2].
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(a) NFS
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(b) OTB-100
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Figure 3. Success plots on NFS (a), OTB-100 (b), and UAV123 (c) datasets. The area-under-the-curve (AUC) scores are shown in the
legend. Note that the full raw results for SiamRPN++ and MDNet on the UAV123 dataset are unavailable. We therefore only show the
final AUC scores of these trackers, as obtained from [9] and [6] respectively. Our approach achieves the best scores on both the NFS and
UAV123 datasets.

5. Detailed Results on NFS, OTB-100, and
UAV123

Here, we provide detailed results on NFS [4], OTB-100
[13], and UAV123 [11] datasets. We use the overlap preci-
sion (OP) metric for evaluating the trackers. The OP score
denotes the percentage of frames in a video for which the
intersection-over-union (IoU) overlap between the tracker
prediction and the ground truth bounding box exceeds a cer-
tain threshold. The mean OP score over all the videos in a
dataset are plotted over a range of thresholds [0, 1] to ob-
tain the success plot. The area under this plot provides the
AUC score, which is used to rank the trackers. We refer
to [13] for further details. The success plots over the entire
NFS, OTB-100, and UAV123 datasets are shown in figure 3.
Our tracker using ResNet-50 backbone, denoted DiMP-50,
achieves the best results on both NFS and UAV123 datasets,
while obtaining results competitive with the state-of-the-art
on the, now saturated, OTB-100 dataset. On the challeng-
ing NFS dataset, our approach achieves an absolute gain of
3.6% AUC score over the previous best method ATOM [2].

6. Impact of Training Data

Here, we investigate the impact of the number of videos
used for training on the tracking performance. We train
different versions of our tracker using the same datasets
as in the main paper, i.e. TrackingNet [12], LaSOT [3],
GOT10k [5], and COCO [10], but using only a sub-set of
videos from each dataset. The results on the combined
OTB-100, NFS, and UAV123 datasets are shown in figure 4.
Observe that the performance degrades by only 1.5% when
the model is trained with only 10% of the total videos. Even
when using only 1% of videos, our approach still obtains a
respectable AUC score of around 58%.

Figure 4. Impact of the percentage of total videos used for offline
training (log x-axis). Results are shown on the combined OTB-
100, NFS, and UAV123 datasets.

7. Visualizations of learned yc, mc, and vc

A 2D visualization of the learned regression label (yc),
target mask (mc), and spatial weight (vc) is provided in fig-
ure 5. Note that each of these quantities are in fact continu-
ous and are here sampled at the discrete feature grid points.
In this example, that target (red box) is centered in the image
patch. From the figure, we can see that the network learns to
give the samples in the target-background transition region
less weight due to their ambiguous nature.
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Figure 5. Visualization of the learned label yc, spatial weight vc, and target mask mc. The red box denotes the target object.
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