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1. Crowdsourcing Task (supplements section 3 of the main paper)
1.1. User Interface

The crowdsourcing user interface is shown in Figure 1.

Why Does a Visual Question Have Different Answers?
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Motivation: Your work will help to build machines that automatically answer questions about our visual world. You will
work with images taken by blind and sighted individuals, paired with questions asked about the images, and answers
given by 10 people for those questions.

Question (by blind or sighted person): Coulld you please tell me if this is regular
coffee or decaffeinated?
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Figure 1: (a) Task instructions to train crowd workers about the reasons that can lead to different answers. (b) The interface
crowd workers used to choose why different answers are observed for a given QI pair with its 10 corresponding answers.

1.2. Quality Control

We included a training example that each crowd worker had to complete prior to completing our task. The authors
identified the correct labels beforehand for this example. For each HIT posted to Amazon Mechanical Turk, the worker had
to select these correct labels in order to proceed to the actual task.


https://vizwiz.org

2. Dataset Analysis (supplements section 4 of the main paper)
2.1. Inter-Annotator Agreement for Reasons Labels

We examine inter-annotator agreement among crowd workers. To do so, we measure the Worker-Worker Similarity
(WWS) as the pairwise annotation similarity between two workers across all the VQAs they have annotated in common. The
WWS measure indicates how close a worker performs to the group of workers who have solved the same task. We calculate
WWS between two crowd workers w; and w; using three approaches: (a) number of common labels selected, (b) cosine
similarity, and (c) Cohen’s « [1].

WWS - Common Labels
This metric is defined as

>~ numCommonLabels(w;, w;,t)
teT; ;

wws(wi, wj) = > numAnnotations(w;,t)

teTy,;

where T; ; is the subset of all VQA tasks 7" annotated by both workers; numCommonLabels(w;,w;,t) is the number of
identical labels selected by both workers w; and w; on a VQA task t; and numAnnotations(w;,t) is the total number of
labels selected by a worker w; for a single VQA task .
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Figure 2: Distribution of “‘WWS - Common Labels’ for all crowd workers across both datasets alone as well as combined.

WWS - Cosine Similarity
This metric is defined as follows:

avg(cos(Vi,w;, Viw,)) V worker j,j # i

where V, ,,, is the “Task Vector’ of worker w; annotating VQA task ¢. A Task Vector for a worker annotating a VQA task is
defined as a vector whose length is 10 (i.e. equal to the number of labels available), and whose individual elements are either
0 or 1, depending on whether the worker selected the label or not. E.g. if a worker selects the labels LQI, AMB, and SBJ,
and the ordering of the labels in the Task Vector are LQI, IVE, INV, DFF, AMB, SBJ, SYN, GRN, SPM, OTH, then the Task
Vector becomes: [1,0,0,0,1,1,0,0,0,0].

WWS - Cohen’s x
This metric is defined as follows:
wws, = avg(k)

where « is the Cohen’s kappa coefficient [ 1] used to measure inter-rater agreement.

Figures 2, 3, and 4 show the distribution of the three WWS metrics for the 934 distinct crowdworkers who provided
annotations for our dataset, averaged for each worker. Among them, 615 distinct workers annotated VQAs from the VizWiz
dataset, while 928 distinct workers annotated the VQA 2.0 dataset.
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Figure 3: Distribution of “‘WWS - Cosine Similarity’ for all crowd workers across both datasets alone as well as combined.
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Figure 4: Distribution of “‘WWS - Cohen’s «’ for all crowd workers across both datasets alone as well as combined.

All the distributions assume an approximately normal form, with peaks at 0.5. This suggests that most workers agreed
with 50% of the other workers with whom they shared common annotation tasks.

In the case of VOQA_2.0, there seems to be a small yet distinct percentage of workers who did not agree with anyone. This
is characterized by a small lump near the O value in the plots for VQA_2.0, of all the three WWS metrics (Figures 2, 3, & 4).

2.2. Analysis Using All Validity Thresholds
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Figure 5: Relative proportion of the various sources of answer disagreement (augmented from Figure 2 in the paper).

We tallied the number of reasons leading to answer differences for each VQA, employing various levels of trust in crowd
workers: from 1 person threshold to 5 person thresholds.
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Figure 6: Histograms showing the frequency of each reason leading to answer differences (augmented from Figure 3 in the

paper). Data labels show counts of VQAs matching the validity threshold.
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Figure 7: Histograms showing the number of unique reasons of answer differences identified for each visual question. Data
labels show counts of VQAs matching the validity threshold.



Figure 5 shows the percentage of visual questions, where answer differences arise due to issues with both the QI pair and
the 10 answers (QI & A, yellow), issues with the QI pair only (QI, striped), or issues with the 10 answers only (A, red), for
the (a) VizWiz and (b) VQA 2.0 datasets. Results are shown with respect to different levels of trust in the crowd workers: (i)
Trust All: only one worker has to select the reason (1 person validity threshold); (i) Trust Any Pair: at least two workers
must agree on the reason (2 person validity threshold); (iii) Trust Majority: at least three workers must agree on the reason
(3 person validity threshold); (iv): at least four workers must have to select the reason (4 person validity threshold); and (v)
Trust Consensus: all five workers must agree on the reason (5 person validity threshold).

Figure 6 shows histograms of the frequency of each reason leading to answer differences for (a) 29,921 visual questions
asked by blind people (VizWiz), (b) 15,034 visual questions asked by sighted people (VOQA_2.0), and (c) combination of the
previous two. The plots are computed based on increasing thresholds of inter-worker agreement required to make a reason
valid, ranging from requiring only one worker selecting it (1 person validity threshold) up to all workers agreeing (5 person
threshold). The most popular reasons are ambiguous visual questions (AMB), synonymous answers (SYN), and varying
answer granularity (GRN) whereas the most rare are spam (SPM) and other (OTH).

Figure 7 shows the summary of how many unique reasons are identified as the sources of answer differences for 29,921
VQs asked by blind people (VizWiz), 15,034 VQs asked by sighted people (VQA_2.0), and their combination. Across both
datasets, most commonly there are three unique reasons for answer differences. Visual inspections show that these are the
three most popular reasons: ‘ambiguous’, ‘synonyms’, and ‘granularity’.

3. Prediction Model Analysis (supplements section 5 of the main paper)

Table 1: Average precision for predicting why answers to visual questions will differ for the VQA_2.0 and VizWiz datasets
when we exclude the “spam” category for training the models.

Model Overal LQI IVE INV DEF AMB SBJ SYN GRN OTH
Random 3354 371 2243 1509 1462 9519 14.18 6499 6942 225
QI-Relevance [3] 3576 401 43.16 1509 14.62 9411 14.18 6499 69.42 225
o 1 3538 3.66 29.55 1006 17.04 93.04 1829 7450 72.09 0.18
SIe) 48.11 791 5923 4343 28.02 9670 23.69 8885 8478  0.36
S Q4 4787 9.18 5883 40.83 28.18 9648 2420 8839 8437 037
> Q+l+A 4805 7.09 59.46 4518 27.99 9660 21.89 8897 8505 0.6
Q+I+A_FT 48.89 9.1 59.78 4499 30.11 9652 2433 89.49 8539 025
Q+I+A_GT 4896  8.65 6030 4600 2891 96.63 24.13 89.73 86.00 0.26
Random 3335 2359 3369 18.15 5.0 7470 5.14 6661 71.94 0.62
QI-Relevance [3] 3876 30.56 4052 18.15 57 7653 5.14 6661 7194 0.62
Unanswerable [2] 4326 44.82 5863 18.15 57 80.14 514 6661 7194 062
N T 4479 5523 5038 29.85 8.17 8342 9.19 7996 8634 0.62
Z Q 4476 3538 5443 3891 13.59 8444 1059 79.68 85.15 0.65
S Q4 50.59 56.54 6191 4525 13.80 87.55 11.55 8597 9142 1.36
Q+I+A 5518 6551 77.36 5576 1038 89.77 10.83 9039 9550 1.14
Q+I+A_FT 5535 6530 77.18 54.19 1424 89.60 1132 89.99 9524  1.07

Q+I+A_GT 5597 66.03 77.80 56.55 1294 90.03 12.51 9041 9551 1.97




What is this? What are these? Which color is this pen?

What does this say?

What kind of K cup? What fragrance is this? What's the length of a cane?  what does this paper say?

I8 WE Awve, GRN Lal, BRN, Ive IVE, GRN, AMB SYN, GRN, AMB

Figure 8: Qualitative examples of our prediction system (Q+I+A_FT). - denotes correct prediction, - denotes wrong
prediction, and | turquoise denotes missing prediction.
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