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In this supplemental material, we present more de-
tails of model implementations and the proposed vehicle-
pedestrian-mixed dataset. More statistical analysis and ex-
periments are also provided here.

1. Implementation Details

In this work, the size of the orientation vector is set to 75
pixels in the BJI data and 50 pixels in the TJI data. We em-
bed the input position of a pedestrian as a 64 dimensional
vector. Each boundary vertex is embedded into a 64 dimen-
sional vector (Eq. 2) first, and the trajectory of a vehicle is
finally embedded into 64 dimensional vectors (Eq. 3). The
dimension of the hidden states used in LSTMs for pedestri-
ans and vehicles is fixed to 128. Additionally, the dimen-
sion of the embedding function on H""), ") gPPi),
and H,(p ") is 64. N, for the grids of both VO and PO is set
to 64. The size of the neighborhood is set to 16. The ini-
tial learning rate for pedestrians and vehicles is set to 0.005
and 0.01, respectively. The learning process adopts RMS-
propl3] to update the network iteratively with a batch size
of 16 for 100 epochs. The implementation is built on the
Tensorflow platform[1].

2. More Details of the Proposed Dataset

A new vehicle-pedestrian-mixed dataset is proposed in
our work. The initial video dataset was acquired with a DJI
Mavic Pro drone, which hovered on the intersections and
took video from a top-down view.

In order to obtain the accurate trajectories of vehicles
and pedestrians from the acquired video data, we employed
a visual tracking algorithm called Multi-Domain Convolu-
tional Neural Networks (MDNet)[6] to track the locations
of vehicles and pedestrians in each video frame. We used
the center of the bounding box of each vehicle/pedestrian
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as the location of the vehicle/pedestrian. After the auto-
mated video tracking, we further manually checked and cor-
rected any miss-tracked places for every frame to ensure the
data quality. Although there is an embedded stable gyro-
scope to ensure the quality of the video taken by the drone,
the inevitable effects of wind and slight fluctuations of the
drone make the video slightly rotated and translated. To
remedy this issue, we detected the SURF features[2] and
transformed the annotated positions in the original video
into their corresponding positions in a rectified coordinate
system. In order to obtain the orientations of the vehicles,
we first used Gaussian smoothing to remove potential track-
ing noise and high-frequency information in the trajectories.
For a vehicle v/, we computed the trajectory tangent at ¢ as
the orientation of v/.

Our in-house built dataset has several advantages over
existing similar datasets. First, our dataset contains the
trajectories of a large number of vehicles and pedestrians
in vehicle-pedestrian-mixed scenes. The agents were well
classified and capture complex interactions among vehicles
and pedestrians. Second, our dataset with well-annotated
trajectories has been checked and manually corrected frame
by frame. In total, 6405 pedestrians and 6478 vehicles
in two scenarios were captured from the top-down view.
Moreover, there are 23498 and 8000 annotated frames in
two scenarios, respectively.

3. More Experiment Qualitative Analysis

We further show more quantitative and qualitative anal-
ysis here.

3.1. More Quantitative Analysis

Because SGAN performs better than other methods on
predicting homogeneous trajectories in the prior experi-
ments, we choose SGAN [4] as a baseline. We further
compare our method with TrafficPredict [3], specifically
designed to predict trajectories for heterogeneous traffic-
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Figure 1. Four examples of the predicted trajectories compared with the ground truth and SGAN-20VP-20. The left and center-right
columns show the position trajectories of both vehicles and pedestrians predicted by VPLSTM-OP-20 and SGAN-20VP-20, respectively.
The kinematic trajectories of vehicles illustrated in the center-left and right columns are represented by OBB. Here T = 8 and Tjyreg = 12.

In order to clearly illustrate kinematic trajectories, we sample trajectories and show vehicles at ¢ = 3,6,9,12,15,18.
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Figure 2. Failed cases of the predicted trajectories compared with the ground truth and SGAN-20VP-20. Here Tops = 8 and Tyreq = 12.
The trajectories of vehicles are shown atr = 3,6,9,12,15,18.

agents, on dataset Apollo [5]]. As shown in Table [T, most 3.2. More Qualitative Analysis

results of our method outperform state-of-the-art competi-

tors. More qualitative evaluation results are shown in Fig[T]
As illustrated in example (1) and (4), the turning vehi-
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Metric set Agent TrafficPredict [5 VP 50VP30 530 OP30
Vehicle 21.72730.43 3.19/6.85 | 2.03/4.20 | 2.07/2.33 | 1.90/2.09
ADE Apollo | Pedestrian 12.20/15.22 2.29/5.09 1.58/3.38 | 2.18/2.60 | 2.28/2.39
Average 20.35/28.64 2917637 | 1.89/3.97 [ 2107239 | 2.01/2.14
Vehicle 39.54/50.41 8.82/1391 | 5.70/8.48 | 2.92/3.34 | 2.66/3.07
FDE | Apollo | Pedestrian 21.24724.38 5.97/9.58 429/6.31 | 327/4.03 | 3.17/3.35
Average 37.72748.45 79371272 | 526/7.88 [ 3.02/3.51 | 2.80/3.14
ADEg | Apollo vehicle 23.23/31.81 3.87/7.88 | 2.63/5.11 | 2.57/2.86 | 2.45/2.66
FDEq | Apollo vehicle 41.08/51.52 10.03/15.14 | 6.72/9.51 | 3.44/392 | 3.24/3.64

Table 1. Quantitative results for the predicted positions and orien-
tations on Apollo. Error metrics are reported in meters.

cles limited with kinematics will slow down to avoid colli-
sions with other vehicles and pedestrians. Although SGAN-
20VP-20 can predict reasonable trajectories (see the center-
right column) for vehicles that drive as particles without
size. However, the predicted kinematic trajectories of ve-
hicles are unsmooth due to the estimated orientations. The
trajectory of a pedestrian predicted in example (3) is visibly
away from the ground truth. However, considering the on-
coming vehicle in the front of the pedestrian, our predicted
trajectory of the pedestrian tends to slow down to avoid im-
plicit collisions.

Failed cases: We also show a failed case in Fig]2] Com-
pared with the ground truth, the following vehicles tend to
keep space to avoid collisions with neighboring vehicles. In
the same situation, the kinematic trajectories predicted by
SGAN-20VP-20 could cause obvious collisions.
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