
Supplementary Material to

Batch Weight for Domain Adaptation with Mass Shift

Mikołaj Bińkowski, R Devon Hjelm, and Aaron Courville

Appendix A. One-sided batch weight
Assume that P

x

and Q
y

are source and target measures on
domains X and Y , respectively. We assume that correct domain
transfer from X to Y can be represented by joint distribution P

xy

such that the marginal P
y

= E
x

P
xy

covers the target distribution

suppQ
y

⇢ suppP
y

. (7)

This assumption is much weaker than equality Q
y

= P
y

which
most domain transfer models implicitly assume.

We would like to learn to transfer (possibly non-
deterministically) by training a generator function G : X ! Y
that mimics the conditional P

y|x. Let D 2 L = Lip1(Y,R)
be a Wasserstein discriminator (we will stick to the Wasserstein
framework, however similar arguments can be derived in general
for any divergence).

The Wasserstein GAN optimizes the following loss function,

inf
G

sup
D2L

E
X⇠P

x

[D(G(X))]� E
Y ⇠Q

y

[D(Y)], (8)

which is equivalent to,

inf
G

sup
D2L

E
Y ⇠PG

y

[D(Y)]� E
Y ⇠Q

y

[D(Y)]), (9)

where PG

y

= G#P
x

is a push forward measure of P
x

through G.
This optimization suffers from the problem of mode-mass im-

balance, as in general we do not want PG

y

to match with Q
y

. How-
ever we do expect PG

y

to cover all the modes of Q
y

, as P
y

does
due to the assumption 7. If this is true, then the Radon-Nikodym
derivative dQ

y

dPG
y

exists and,

E
Y ⇠Q

y

[D(Y)] = E
Y

0⇠PG
y

D(Y 0)

dQ
y

dPG

y

(Y 0)

�

= E
X⇠P

x

D(G(X))

dQ
y

dPG

y

(G(X))

�
. (10)

dQ
y

dPG
y

(G(·)) is an unknown function, and therefore the last expres-
sion in the above equation cannot be obtained directly. However,
we may try to estimate it using e.g. neural network W ,

inf
W2W

�
E
X⇠P

x

[D(G(X) ·W (X)]� E
Y ⇠Q

y

[D(Y)]
�2

, (11)

where W = {W : E
X⇠P

x

[W (X)] = 1,W � 0}. Such con-
straint can easily be enforced by a softmax layer computed over
samples in the batch.

Problems 8 and 11 together motivate the following optimiza-
tion criterion for Wasserstein batch-weighted domain transfer:

inf
G,W

sup
D

�
E
X⇠P

x

[D(G(X)) ·W (X)]� E
Y ⇠Q

y

[D(Y)]
�2

(12)

Algorithm 2 One-sided Batch Weight
Given: P

x

and Q
y

- source and target distributions
Given: d - number of discriminator steps per generator
step, N - total training steps, m - batch size
Initialize generator G, discriminator D and weighting W

networks’ parameters ✓
G

, ✓

D

, ✓

W

.
for k = 1 to n do
generator - weight step

Sample x1, . . . , xm

⇠ P
x

and y1, . . . , ym ⇠ Q
y

.
w1, . . . , wm

 softmax(W (x1), . . . ,W (x
m

))
L

�
P

m

i=1 D(G(x
i

)) · w
i

L

+
P

m

i=1 D(y
i

) · 1
m

✓

G

 Adam (r
G

L

�
, ✓

G

)
✓

W

 Adam
�
r

W

⇥
(L� � L

+)2
⇤
, ✓

W

�

for j = 1 to d do
Sample x1, . . . , xm

⇠ P
x

and y1, . . . , ym ⇠ Q
y

.
w1, . . . , wm

 softmax(W (x1), . . . ,W (x
m

))
L

P
m

i=1 D(G(x
i

)) · w
i

�
P

m

i=1 D(y
i

) · 1
m

✓

D

 Adam (�r
D

L, ✓

D

)
end for

end for

Although optimization of the Wasserstein objective is techni-
cally equivalent to optimization of its square, in practice it is more
convenient to use standard WGAN loss. Therefore the training
procedure optimizes slightly different losses for weighting and
generator networks. The proposed procedure for batch-weighted
domain transfer is shown in Algorithm 2.

A.1. Possible issues

Samples from modes in the source domain that are underrep-
resented in the target domain might be transferred poorly if too
low weights are assigned to them by the weighting network. This
problem essentially stems from the fact that we are weighting the
generated samples, not the target ones, which biases the generator
so that it values generated samples according to their frequency in
target domain Q

y

, even though we care about quality of PG

y

, which
stems from P

x

.

Appendix B. Architecture details

Tables 3 and 2 present generator and joint-discriminator archi-
tectures used in experiments with 32x32 images.

image x concat(x, y) image y

4x4 conv(32) 4x4 conv(64) 4x4 conv(32)
(x1) (xy1) (y1)

concat(x1, xy1, y1)

4x4 conv(64) 4x4 conv(128) 4x4 conv(64)
(x2) (xy2) (xy2)

concat(x2, xy2, y2)

2 x ResBlock(128)

4x4 conv(128) 4x4 conv(256) 4x4 conv(128)
(x3) (xy3) (y3)

concat(x3, xy3, y3)

4x4 conv(256)

fc 1024! 256

fc 256! 1

Table 2: Joint discriminator architecture. Each convolution
has stride 2. Residual blocks [13] contain two 3x3 convolu-
tions and skip connection.

image x 2 Rc⇥32⇥32 noise z 2 Rd

KxK conv(64), stride s repeat (32/s⇥ 32/s)

2 x ResBlock(64) (z0)

1x1 conv(64), stride 1
(x0)

concat(x0
, z

0)
1x1 conv(64), stride 1

2 x ResBlock(64)

KxK transposed conv(c), stride s

Table 3: Generator network architecture. c denotes num-
ber of channels (1 for greyscale, 3 for rgb), s stride and K

kernel size. For MNIST - SR-MNIST task s = 2,K = 4,
for MNIST - SVHN s = 1,K = 1. Residual blocks[13]
contain two 3x3 convolutions and skip connection.

B.1. Weighting network
We considered three different ways of modelling weight net-

work W . Given batches of pairs of real and generated samples
(x, G

yx

(x)),x ⇠ Pn

x

and (G
xy

(y),y),y ⇠ Qn

y

we may get the
weights w

x

, w
y

using each of the following architectures
1. (W concatenates two arguments)

W : X ⇥ Y ! R
w

x

= �(W (x, G
xy

(x))), w
y

= �(�W (G
yx

(y),y)).

2. (W takes one argument)

W : X ! R,
w

x

= �(W (x)), w
y

= �(�W (G
yx

(y))).

3. (composite)

W
x

: X ! R, W
y

: Y ! R,
w

x

= 1
2 (�(W

x

(x)) + �(�W
y

(G
xy

(x)))) ,

w
y

= 1
2 (�(�W

x

(G
yx

(y))) + �(W
y

(y))) .

The weight network(s) W (W
x

,W
y

) were the same as DCGAN
discriminator [29] with four convolutional layers and 64 features
in the first layer.

We found the last (composite) architecture to be the most stable
one. The first approach, although the most natural, most probably
suffers from the fact that it takes longer for joint samples to look
similar to each other than it does for the marginals.

Appendix C. Role of the noise term
We have observed two types of failures made by MUNIT-

trained models in the presence of mode-mass imbalance, both re-
lated to what these models encode in the noise term.

In the first one, the class/mode is kept in a transferred sample
depending on the noise term. This has been observed in Edges to
Shoes&Bags task, see Figure 7b and 7d. In multimodal domain
transfer, noise term should only encode the features which are not
present in the source domain. In this task, however, the MUNIT-
trained model encoded the conditional mode: some noise values
caused the generator ’forget’ the source image and generate one
over-represented in the target domain (regardless of the source im-
age mode/class).

The second issue is the amount of the source image features
retained in the transferred one. In CelebA to Portrait transfer,
MUNIT tends to keep very few features of the source image (e.g.
position of eyes and and nose) and model all high-level features
using noise term. As shown in Figure 8b, samples obtained with
the same source image are less similar to each other than those
generated using the same noise term. With JD-BW model (Fig.
8a) it is the opposite: generators retain much more features of the
source image, while the noise terms determines only the style of
the generated portraits.

(a) JD - BW (ours) (b) MUNIT

(c) JD - BW (ours) (d) MUNIT

Figure 7: Edges to Shoes&Bags transfer with fixed noise values. In each picture first column represents original images;
other columns present transfer with noise term fixed per column and source picture fixed per row. In MUNIT, some noise
terms (e.g. columns 3, 4, 5 in (b); 2, 6, 8 and 9 in (d)) ’deactivate’ source images to produce images from over-represented
class in the target domain.

(a) JD - BW (ours) (b) MUNIT

Figure 8: CelebA to Portrait transfer with fixed noise values. In both pictures the first columns represent original images;
other columns present transfer with noise term fixed per column and source CelebA photo fixed per row. The proposed
JD-BW model retains much more facial features, using noise term to encode mostly the portrait style. MUNIT, on the other
hand, infers most of the features from noise term, keeping only the position from the source photo.

