SynDeMo: Synergistic Deep Feature Alignment for
Joint Learning of Depth and Ego-Motion

A. Supplementary Material

In this supplementary material, we provide additional
quantitative and qualitative results. Firstly, we provide ad-
ditional odometry evaluation of our SynDeMo for the com-
plete KITTI test sequences [6] in Sec. [A] In Sec. [AZ]
we explore the effectiveness of our proposed loss function
by comparing the full model with our baseline for odometry
evaluation. In addition, we provide ablation study to evalu-
ate the effectiveness of our proposed joint training for depth
estimation in Sec. @ Moreover, we demonstrate gener-
alization abilities of SynDeMo jointly trained on the KITTI
and virtual KITTI (vKITTI) [4] for the Cityscapes Mainz
sequence [2]] in Sec. [A4]

A.l. Additional Odometry Evaluation

The Absolute Trajectory Error (ATE) [7] metric only
evaluates pose error for every 5-frame snippets and consid-
ers the first frame pose prediction to be ground truth. There-
fore, the small quantitative error can add up in the sequence
leading to large performance difference. To better com-
pare the performance, we report the average translational er-
ror and average rotational error (°/100m) for the complete
KITTI test sequences [6] in Table [T, We split the 11 se-
quences with the ground truth odometry into two parts: the
split in which sequences 00-08 are used for training while
09-10 are used for testing.

As shown in Table[I] our SynDeMo shows superior per-
formance with respect to monocular learning method [9]],
and is comparable to other SLAM methods e.g., ORB-
SLAM [7] (with and without loop closure). Our method
also outperforms [8]], which uses stereo data for training by
a large margin.

A.2. Ablation Study on Geometric Cue from Syn-
thetic Data

Using multi-view self-supervised loss helps us to lever-
age the geometric cue from synthetic data and to enhance
the depth estimation results. To examine this, we measure
the Absolute Pose Error (APE) for our full model and the
other baseline without using multi-view self-supervised loss
term during training. It is interesting to note that our full

Seq. 09 Seq. 10
‘ Method tret () Tret(°)  trer (%)  Trer(°)
ORB-SLAM [7] 15.30 0.26 3.68 0.48
ORB-SLAM-LC [7] 16.23 1.36 - -
Zhou et al. [9] 17.84 6.78 3791 17.78
Zhan et al. [8] 11.92 3.60 12.62 3.43
SynDeMo (Real&Synth. | Full) 3.70 1.49 6.05 2.11

Table 1. Odometry evaluation on two test sequences of the KITTI
odometry dataset using the metric of average translational and ro-
tational errors. The results of other baselines are taken from [8]].
LC denotes loop closure.

SynDeMo model trained with the proposed self-supervised
loss yields a notable performance gain in odometry esti-
mation for the KITTI sequence 10 (see Fig. [I) compared
to other baseline, SynDeMo (Real&Synth. | Feat Align).
These quantitative results align well with the qualitative re-
sults in Fig. 2]
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Figure 1. The violin histogram of APE on visual odometry estima-
tion of our SynDeMo (Real&Synth. | Full) compared with Syn-
DeMo (Real&Synth. | Feat Align) for the KITTI testing sequence
10.

A.3. Ablation Study on Joint Training for Depth
Estimation

We conduct an ablation study to show how domain adap-
tation would affect the performance for our depth estimator.



Error Metric | Accuracy Metric 1
AbsRel SqRel RMSE RMSElog <125 §<1.25% §<1.258

Our Depth Estimator (all-synthetic) vK 0.265 3116 6.155 0314 0.688 0.858 0.937
Our Depth Estimator (real&synthetic)y K+vK 0116 ~ 0.746  4.627 0.194 0.858 0.952 0.977

Method Dataset

Table 2. Evaluation of depth estimation results for the KITTI test set [3]. For datasets used for training, K is the real KITTI dataset [3]] and
vK is the virtual KITTI dataset [4]]. The best results are shown in bold.
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Figure 2. Qualitative results on visual odometry of our SynDeMo
(Real&Synth. | Full) compared with SynDeMo (Real&Synth. |
Feat Align) and the ground truth for the KITTI testing sequence
10.

Due to the distribution discrepancy between synthetic im-
ages and real monocular images, the learned depth estima-
tor from synthetic images will not achieve the desired per-
formance when the learned model applies to real monocular
images. Table 2] demonstrates results of our model on real
test images for the KITTI dataset. We can observe that the
performance of our depth estimator trained jointly with real
and synthetic images has a significant improvement over all
metrics compared to our depth estimator trained only on
synthetic images.

A.4. Generalization Capabilities

We qualitatively compare our depth estimation results
with the most recent cross-domain learning method [T
on the Cityscapes Mainz sequence [2] without training on
Cityscapes itself.

As shown in Fig. [3| our SynDeMo is capable to detect
more details for objects than [1]], with a likely reason be-
ing that the scene geometry from the synthetic data is well
retained.
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