Supplementary material: Stochastic Filter Groups for Multi-Task CNNs:
Learning Specialist and Generalist Convolution Kernels

Felix J.S. Bragman* Ryutaro Tanno*
University College London, UK University College London, UK

f.bragman@ucl.ac.uk ryutaro.tanno.1l5@ucl.ac.uk

Sebastien Ourselin Daniel C. Alexander M. Jorge Cardoso
Kings College London University College London Kings College London

sebastien.ourselin@kcl.ac.uk d.alexander@ucl.ac.uk m. jorge.cardoso@kcl.ac.uk

Contents

(1. Training and implementation: additional details|
1.1. Optimisation, regularisation and initialisation| L

[.3. Medical imaging dataset|
4. |mp|ementat10n details]

5 CNNarchi T detal

[3. Learned grouping probability plots|

E rsuali Factivati

[S. Learned filter groups on duplicate tasks|

*Both authors contributed equally

1. Training and implementation: additional details
1.1. Optimisation, regularisation and initialisation
All networks were trained with ADAM optimiser [9] with an initial learning rate of 10~3 and 3 = [0.9,0.999]. We used
values of A\; = 107% and A\ = 1077 for the weight and entropy regularisation factors in Equation (5) in Section 3.2. All
stochastic filter group (SFG) modules were initialised with grouping probabilities p=[0.2, 0.6, 0.2] for every convolution
kernel. Positivity of the grouping probabilities p is enforced by passing the output through a sofiplus function f(z) =
In(14 e*) as in [10]]. The scheduler 7 = max(0.10, exp(—rt)) recommended in [8] was used to anneal the Gumbel-Softmax
temperature 7 where 7 is the annealing rate and ¢ is the current training iteration. We used 7 = 10~° for our models.
Hyper-parameters for the annealing rate and the entropy regularisation weight were obtained by analysis of the network
performance on a secondary randomly split on the UTK dataset (70/15/15). They were then applied to all trained models
(large and small dataset for UTKFace and medical imaging dataset).

1.2. UTKFace

For training the VGG networks (Section 4.1 - UTKFace network), we used the root-mean-squared-error (RMSE) for age
regression and the cross entropy loss for gender classification. The labels for age were divided by 100 prior to training. The
input RGB images (200x200x3) were all normalised channel wise to have unit variance and zero mean prior to training and
testing. A batch-size of 10 was used. No augmentation was applied. We monitored performance during training using the
validation set (n = 3554) and trained up to 330 epochs. We performed 150 validation iterations every 1000 iterations, leading
to 1500 predictions per validation iteration. Performance on the validation set was analysed and the iteration where Mean
Absolute Error (MAE) was minimised and classification Accuracy was maximised was chosen for the test set.

1.3. Medical imaging dataset

We used T2-weighted Magnetic Resonance Imaging (MRI) scans (3T, 2D spin echo, TE/TR: 80/2500ms, voxel size
1.46x1.46x5mm?) and Computed Tomography (CT) scans (140 kVp, voxel size 0.98x0.98x1.5 mm?). The MR and CT scans
were resampled to isotropic resolution (1.46mm?). We performed intensity non-uniformity correction on the MR scans [[15]].

In the HighResNet networks (Section 4.1 - Medical imaging network), we used the RMSE loss for the regression task
and the Dice + Cross-Entropy loss [[7] for the segmentation task. The CT scans were normalised using the transformation
CT/1024 + 1. The original range of the CT voxel intensity was [—1024, 2500] with the background set to —1024. The input
MRI scans were first normalised using histogram normalisation based on the 1°* and 99*" percentile [13]. The MRI scans
were then normalised to zero mean and unit variance. At test time, input MRI scans were normalised using the histogram
normalisation transformation obtained from the training set then normalised to have zero mean and unit variance.

All scans were of size 288x288x62. We sub-sampled random patches from random axial slices of size 128x128. We
sampled from all axial slices in the volume (n = 62). We trained up to 200, 000 iterations using a batch-size of 10. We
applied augmentation to the randomly sampled patches using random scaling factors in the range [—10%, 10%] and random
rotation angles in the range [—10°, 10°]. The trained patches were zero-padded to increase their size to 136x136. However,
the loss during training was only calculated in non-padded regions.

The inference iteration for the test set was determined when the performance metrics on the training set (Mean Absolute
Error and Accuracy) first started to converge for at least 10, 000 iterations. In our model where the grouping probabilities
were learned, the iteration when convergence in the update of the grouping probabilities was first observed was selected since
performance generally increased as the grouping probabilities were updated.

1.4. Implementation details

We used Tensorflow and implemented our models within the NiftyNet framework [2]. Models were trained on NVIDIA
Titan Xp, P6000 and V100. All networks were trained in the Stochastic Filter Group paradigm. Single-task networks were
trained by hard-coding the allocation of kernels to task 1 and task 2 i.e. 50% of kernels per layer were allocated to task 1 and
50% were allocated to task 2 with constant probabilities p=[1,0,0] and p=[0,0,1] respectively. The multi-task hard parameter
sharing (MT hard-sharing) network was trained by hard-coding the allocation of kernels to the shared group i.e. 100% of
kernel per layer were allocated to the shared group with constant probability p=[0, 1, 0]. The cross-stitch (CS) [12] networks
were implemented in a similar fashion to the single-task networks, with CS modules applied to the output of the task-specific
convolutional layers. The other baselines (MT-constant mask and MT-constant p=[1/3, /3, 1/3]) were trained similarly.

We used Batch-Normalisation [6] to help stabilise training. We observed that the deviation between population statis-
tics and batch statistics can be high, and thus we did not use population statistic at test time. Rather, we normalised using
batch-statistics instead, and this consistently lead to better predictive performance. We also used the Gumbel-Softmax ap-
proximation [8]] at test-time using the temperature value 7 that corresponded to the iteration in 7 annealing schedule.

2. CNN architectures and details

We include schematics and details of the single-task VGGI11 [14] and HighResNet [[11] networks in Fig. m In this work,
we constructed multi-task architectures by augmenting these networks with the proposed SFG modules. We used the PReLU
activation function [4] in all networks. For the residual blocks used in the HighResNet networks in Fig. [I] (i), we applied
PReLU and batch-norm as pre-activation [5] to the convolutional layers. The SFG module was used to cluster the kernels
in every coloured layer in Fig.[I] and distinct sets of additional transformations (pooling operations for VGG and high-res
blocks for HighResNet) were applied to the outputs of the respective filter groups G1, G, Gs. For a fair comparison, the CS
units [12] were added to the same set of layers.

For clarification, the SFG layer number n (e.g. SFG layer 2) corresponds to the nt" layer with an SFG module. In the
case of SFG-VGG11, each convolutional layer uses SFGs. The SFG layer number thus corresponds with layer number in
the network. In the case of SFG-HighResNet, not every convolutional layer uses SFGs such as those within residual blocks.
Consequently, SFG layer 1 corresponds to layer 1, SFG layer 2 is layer 6, SFG layer 3 is layer 11, SFG layer 4 is layer 16
and SFG layer 5 is layer 17.

(i) VGG11
X — 00—
If‘ “““““““““““ N 3
. | e .

| Layers with SFG/CS modules | : Additional transformations |
I I !
| . | |
3x3 convolutions Batch | | | |
: 64 kernels PRelU Norm. : : “ Max Pooling |
| n 2x2 S=2 |
| 3x3 convolutions PReLU Batch | | | |
| 128 kernels Norm. | || |:| Global Average :
: : | Pooling |

i |
| Repeated 3x3 convolutions Batch |
| 256 kernels PReLU Norm. : : Fully Connected |
I I D Layer :

| Repeated 3x3 convolutions Batch | |
: 512 kernels PReLY. Norm. : | :
\ o ______ _

Additional transformations

3x3 convolutions Batch 1x1 convolutions

PRelLU

| |

| |

| |

| |

| |

| i 16 kernels Norm. | Output

| I :

| 3x3 convolutions Batch | Batch 3x3 convolutions

= 35 kernels Norm. PRetU | Norm. HetU 16 kernels

| . |

| 5 |

3x3 convolutions Batch

| o

: 64 kernels Norm. PRetU | Norm. 32 kernells, dilated by 2
|

e)

Batch 3x3 convolutions
Norm. "ReWY| 64 remels, dilated by 4
m A block with
residual connections

Figure 1. Illustration of the single-task architectures, (i) VGG11 and (ii) HighResNet used for UTKFace and medical imaging dataset,
respectively. In each architecture, the coloured components indicate the layers to which SFG or cross-stitch (CS) modules are applied
when extended to the multi-task learning scenario, whilst the components in black denote the additional transformations applied to the
outputs of respective filter groups or CS operations (see the description of black circles in the schematic provided in Fig. 5 of the main text)

|

|

|

|

|

|

|

|

|

| .
: E Batch PReLU 3x3 convolutions
|

|

|

|

|

|

|

|

3. Learned grouping probability plots

In this section, we illustrate density plots of the learned grouping probabilities p for each trained network (Fig. [2] and
Fig.[3). We also plot the training trajectories of grouping probabilities p of all kernels in each layer. These are colour coded
by iteration number—blue for low and yellow for high iteration number. This shows that some grouping probabilities are
quickly learned in comparison to others.

Fig. 2] and Fig. [3] show that most kernels are in the shared group at earlier layers of the network where mostly low-order
generic features are learned (as illustrated in Fig. [] SFG layer 1). They converge quickly to the shared vertex of the 2-
simplex as evidenced by the colour of the trajectory plots. As the network depth increases, task-specialisation in the kernels
increases (see Fig. [SFG layer > 4). This is illustrated by high density clusters at task-specific vertices and by the trajectory
plots.

SFG Layer 1 SFG Layer 2 SFG Layer 3 SFG Layer 4

0.0 01 02 03 04 05 06 0.7 08 09 1.0 00 01 02 03 04 05 06 0.7 08 09 10 00 01 02 03 04 05 06 0.7 08 09 1.0 0.0 01 02 03 04 05 06 07 08 09 1.0
Shared kernel p Shared kernel p Shared kerel p Shared kernel p

0.0 01 02 03 04 05 06 07 08 09 1.0 0.0 01 02 03 04 05 06 07 08 09 1.0 0.0 01 02 03 04 05 06 07 08 09 10 0.0 01 02 03 04 05 06 07 08 09 10

Shared kerel p Shared kerel p Shared kernel p Shared kernel p

SFG Layer 5 SFG Layer 6 SFG Layer 7 SFG Layer 8

00 01 02 03 04 05 06 07 08 09 1.0 0.0 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 1.0
Shared kernel p Shared kernel p Shared kernel p Shared kernel p
0.0 o

777

00 01 02 03 04/05’06’07 08’0910 00 01 02 03 04 05 0.6 07 0.8 09 10 00 01 02 03 04 05 0.6 0.7 08 0.9 10 0.0 01 02 03 04 05 06 0.7 08 09 1.0
Shared kermel p Shared kemel p Shared kernel p Shared kernel p
Figure 2. Density plots and trajectory plots of the learned grouping probabilities for the SFG-VGG11 architecture. The density plots
represents the final learned probabilities per layer for each kernel. The trajectory plots represent how the grouping probabilities are learned
during training and thus how the connectivity is determined. Histograms of the grouping probabilities were smoothed with a Gaussian
kernel with 0 = 1. The densities are mapped to and visualised in the 2-simplex using python-ternary [3].

SFG Layer 1 SFG Layer 2 SFG Layer 3 SFG Layer 4 SFG Layer 5

0.0 0.0 0.0 0.0
01 Lo 01 Lo 01 Lo 01

02
03

00 01 02 03 04 05 06 0.7 0.8 0.9 1.0 00 01 02 03 04 05 06 0.7 0.8 0.9 1.0 00 01 02 03 04 05 06 0.7 0.8 0.9 1.0 00 01 02 03 04 05 06 07 08 09 1.0 00 01 02 03 04 05 06 07 08 09 1.0
Shared kernel p Shared kernel p Shared kernel p Shared kernel p Shared kemel p

00 01 02 03 04 05 06 0.7 0.8 0.9 10 00 01 02 03 0.4 05 06 0.7 0.8 0.9 10 00 01 02 03 04 05 06 0.7 0.8 0.9 10 00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 1.0

Shared kernel p Shared kernel p Shared kernel p Shared kernel p Shared kernel p

Figure 3. Density plots and trajectory plots of the learned grouping probabilities for the SFG-HighResNet architecture. The density plots
represents the final learned probabilities per layer for each kernel. The trajectory plots represent how the grouping probabilities are learned
during training and thus how the connectivity is determined.

4. Extra visualisation of activations

Here we visualise the activation maps of additional specialist and generalist kernels on the medical imaging dataset. To
classify each kernel according to the group (task 1, task 2 or shared), we selected the group with the respective maximum
assignment probability. The corresponding activation maps for various input images in the medical imaging dataset can be
viewed in Fig. [and Fig.[3

We first analysed the activation maps generated by kernels with low entropy of p (i.e. highly confident group assignment).
At the first layer, all kernels are classified as shared, and the examples in Fig.] support that these kernels tend to account for
low-order features such as edge and contrast of the images. On the other hand, at deeper layers, higher-order representations
are learned, which describe various salient features specific to the tasks such as organs for segmentation, and bones for
CT-synthesis|T]

Secondly, we looked at activation maps from kernels with high entropy of p (i.e. highly uncertain group assignment) in
Fig.[5 In contrast to Fig.[d] the learned features do not appear to capture any meaningful structures for both synthesis and
segmentation tasks. Of particular note is the dead kernel in the top row of the figure; displaying that a high uncertainty in
group allocation correlates with non-informative features.

SFG Layer 1 SFG Layer 4 SFG Layer 5

Shared Task 1 Task 2 Task 1 Task 2

Input MR

®
)

Figure 4. Example activations for kernels with low entropy of p (i.e. group assignment with high confidence) for three input MR slices in
the SFG-HighResNet multi-task network. Columns “Shared”, “Task 1” & “Task 2” display the results from the shared, CT-synthesis and
organ-segmentation specific filter groups in respective layers. We illustrate activations stratified by group in layer 1 (SFG layer 1), layer
16 (SFG layer 4) and layer 17 (SFG layer 5).

I'The bones are generally the most difficult region to synthesise CT intensities from an input MR scan [1]].

SFG Layer 4 SFG Layer 5

Input MR Task 1 Task 2 Task 1 Task 2

Figure 5. Example activations for kernels with high entropy (i.e. group assignment with low confidence) for three input MR slices in
the SFG-HighResNet multi-task network. Columns “Shared”, “Task 17 & “Task 2” display the results from the shared, CT-synthesis and

organ-segmentation specific filter groups in respective layers. We illustrate activations stratified by group in layer 16 (SFG layer 4) and
layer 17 (SFG layer 5).

5. Learned filter groups on duplicate tasks

We analysed the dynamics of a network with SFG modules when trained with two duplicates of the same CT regression
task (instead of two distinct tasks). Fig.[6] visualises the learned grouping and trajectories of the grouping probabilities during
training. In the first 3 SFG layers (layers 1, 6 and 11 of the network), all the kernels are grouped as shared. In the penultimate
SFG layer (layer 16), either kernels are grouped as shared or with probability p=[2, 0, 12], signifying that the kernels can
belong to either task. The final SFG layer (layer 17) shows that most kernels have probabilities p=[1/3, 1/3, 13]. Kernels thus
have equal probability of being task-specific or shared. This is expected as we are training on duplicate tasks and therefore
the kernels are equally likely to be useful across all groups.

Increasing network depth

00 01 02 03 04 05 06 07 0.8 0.9 10 00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
Shared kernel p Shared kerel p Shared kernel p Shared kernel p Shared kernel p

00 01 02 03 04 05 06 07 08 09 1.0 00 01 02 03 04 05 06 0.7 08 09 10 00 01 02 03 04 05 06 07 08 09 10 0.0 0102 03 04 0506 07 08 09 1.0 00 0102 0304 0506 07 08 09 10

Shared kernel p Shared kernel p Shared kernel p Shared kernel p Shared kernel p

Figure 6. Top: density plots for the learned grouping probabilities at each SFG layer in a model where we trained on duplicate tasks i.e.
task 1 is CT synthesis and task 2 is also CT synthesis. Bottom: trajectories of the grouping probabilities during training.

References

(1]

(2]

(3]
(4]

(5]
(6]

(7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]
[15]

Felix Bragman, Ryu Tanno, Zach Eaton-Rosen, Wengqi Li, David Hawkes, Sebastien Ourselin, Daniel Alexander, Jamie
McClelland, and M. Jorge Cardoso. Uncertainty in multitask learning: joint representations for probabilistic mr-only
radiotherapy planning. In Medical Image Computing and Computer-Assisted Interventions (MICCAI), 2018.

Eli Gibson, Wenqi Li, Carole Sudre, Lucas Fidon, Dzhoshkun I. Shakir, Guotai Wang, Zach Eaton-Rosen, Robert Gray,
Tom Doel, Yipeng Hu, Tom Whyntie, Parashkev Nachev, Marc Modat, Dean C. Barratt, Sébastien Ourselin, M. Jorge
Cardoso, and Tom Vercauteren. NiftyNet: a deep-learning platform for medical imaging. Computer Methods and
Programs in Biomedicine, 158:113-122, 2018.

Marc Harper. python-ternary: Ternary plots in python. In 10.5281/zenodo.34938, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification, 2015.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks, 2016.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Fabian Isensee, Jens Petersen, Andre Klein, David Zimmerer, Paul F. Jaeger, Simon Kohl, Jakob Wasserthal, Gregor
Koehler, Tobias Norajitra, Sebastian Wirkert, and Klaus H. Maier-Hein. nnu-net: Self-adapting framework for u-net-
based medical image segmentation, 2018.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International Conference for
Learning Representations, 2015.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty estima-
tion using deep ensembles. In Advances in Neural Information Processing Systems, pages 6402-6413, 2017.

Wengqi Li, Guotai Wang, Lucas Fidon, Sebastien Ourselin, M. Jorge Cardoso, and Tom Vercauteren. On the compact-
ness, efficiency, and representation of 3d convolutional networks: Brain parcellation as a pretext task. 2017.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch Networks for Multi-task Learning.
In CVPR, 2016.

L.G. Nyul, J.K. Udupa, and Xuan Zhang. New variants of a method of MRI scale standardization. IEEE Transactions
on Medical Imaging, 19(2):143—-150, 2000.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition, 2014.

Nicholas J Tustison, Brian B Avants, Philip A Cook, Yuanjie Zheng, Alexander Egan, Paul A Yushkevich, and James C
Gee. N4itk: Improved n3 bias correction. IEEE Transactions on Medical Imaging, 29(6):1310-1320, 2010.

