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1. Network Architectures
In this section, we present the network architectures of

the AdaMatting in detail. The architecture of the encoder
and the decoder is in Fig. 1. Shortcut connections are
linked between two encoder-decoder modules of each line.
The two decoders (for alpha estimation and trimap adap-
tation( shared the same architectures except for the output
layers.same)

In order to prove the effectiveness of each modules
(namely the sub-pixel convolutions and the global convolu-
tions), we perform ablation experiments for these modules.
The results are presented in Tab. 1. Obviously all these de-
signed technique contributes to the network performance.

Table 1. Ablation study of each component. SP for sub-pixel con-
volutions, GC for global convolutions and PU for propagation unit.
The gradient loss is scaled by 103.

Model Grad SAD MSE
Ours-w/o-SP-w/o-GC-w/o-PU 25.18 51.45 0.0139

Ours-w/o-SP-w/o-PU 23.93 47.32 0.0124
Ours-w/o-GC-w/o-PU 20.77 45.71 0.0117
Ours-w/o-T-Decoder 21.50 46.68 0.0129

Ours-w/o-PU 17.86 44.13 0.0111
Ours 16.89 41.70 0.0102

2. More Analysis on Multi-Task Loss
We include more results for the multi-task loss in this

section. The curve of σ1, σ2 of Eq. 4 during training is
presented in Fig. 2. It can be observed from the figure
that the two weights stably converges to a fixed weights
(i.e. σ1 ≈ 0.0995, σ2 ≈ 0.0878). However, if we use this
weights initially and fix them during training, the results are
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not as good. The quantitative results are in Tab. 2, where
“D” represents for dynamically weighted, and “F” repre-
sents for using fixed σ1 = 0.0995, σ2 = 0.0878 Obviously.
the dynamically weighted loss lead to better results. This
phenomenon further indicates that dynamically adjust the
importance for each task is of great help for the multi-task
learning.

Table 2. Analysis of multi-task loss. AdaMatting-F is the model
trained using fixed linearly combined loss (σ1 = 0.0995, σ2 =
0.0878), and AdaMatting-D is the model trained with dynamically
weighted loss.

Model Grad SAD MSE
AdaMatting-F 18.35 43.54 0.0118
AdaMatting-D 16.89 41.70 0.0102

3. More Qualitative Results
In this section, we present more results produced by the

AdaMatting.

3.1. More Results on Composition-1k

Four results tested on the Composition-1k are presented
in Fig. 3 and Fig. 4. As can be observed from these re-
sults, our AdaMatting generates more vivid details while
clearly separating the foreground and background objects.
Especially for the first image “lace”, benefiting from the
structural semantics learned from trimap adaptation, the
AdaMatting could easily distinguish the foreground from
the background with low-quality trimap inputs, while the
DIM produces tainted alpha on the background.

3.2. More Results on Real Image

More results on real-world images are presented in Fig.
5. For clearer demonstration, we paste the extracted fore-
ground onto a new background. Specially, the input trimap
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Encoder Decoder

Component Output Size Filter Size Component Output 
Size Filter Size

Conv1 320×320 2×2
max pooling

GC1_Skip 10×10
5×1, 512
1×5, 512 + 1×5, 512

5×1, 512

Upsample1 20×20 1×1, 2048
Sub-pixel 2x 

Res-2 80×80
1×1, 64  
3×3, 64   
1×1, 192

×3
GC2_Skip 20×20

5×1, 512
1×5, 512 + 1×5, 512

5×1, 512

Upsample2 40×40 1×1, 2048
Sub-pixel 2x 

Res-3 40×40
1×1, 128   
3×3, 128   
1×1, 384   

×4
GC3_Skip 40×40

5×1, 256
1×5, 256 + 1×5, 256

5×1, 256

Upsample3 80×80 1×1, 1024
Sub-pixel 2x 

Res-4 20×20
1×1, 256   
3×3, 256   
1×1, 1024

×6
GC4_Skip 80×80

5×1, 128
1×5, 128 + 1×5, 128

5×1, 128

Upsample4 160×160 1×1, 512
Sub-pixel 2x 

Res-5 10×10
1×1, 512   
3×3, 512   
1×1, 1024

×3
GC5_Skip 160×160

5×1, 64
1×5, 64 + 1×5, 64

5×1, 64

Upsample5 320×320 1×1, 256
Sub-pixel 2x 

Output 320×320

3×3, 1
+ Sigmoid(alpha)

3×3, 3 + 
Softmax(Trimap)

Figure 1. Architecture of the Multi-task AutoEnocoder.

is genreated by portrait segmentation model followed by
eroding the boundary for fixed pixels. As can be observed,
our AdaMatting produces more natural and robust results
compared to other state-of-the-arts.

Figure 2. Training plots showing convergence of learning weights.
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Figure 3. Qualitative comparisons on the Adobe Composition-1k test set.
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Figure 4. Qualitative comparisons on the Adobe Composition-1k test set.

Input Image Trimap Information Flow[1] DIM[5] Ours
Figure 5. Comparisons of background replacement on a real-world image.
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