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1. Proof of Lemma 1 2) For d = 2 (polynomial mapping), (2)) becomes
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Lemma 1 For any N with the assumptions in [Manuscrz.pt, ) [E[(ZZ B (az,z‘ZiQ + a1 Zi + aO,i))2

Section 3.1] and X(Z) that has the form [Manuscript, n

Eq.(2)] with d € {1,2}, 2 )
+ 02 2 2 - 1)yz—ﬂ
EL,(Z,X(Z);0°) = EA,(x,X(Z)). (D) m=1
1 2 2 2 2
Moreover, when N is white Gaussian, then, :gE [E[(Zz —0°)+ (GQxiZi +a1:Z; + aO;i)
U C2N . . )
L,.(Z,X(Z);0%) coincides with the SURE [2]]. — %ay,(Z5 — 22,0%) — 2a1.4(Z2 — 0?) — QGO,iZilz_lH
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Now, we divide into two cases, d = 1 and d = 2. ) R
1) For d = 1 (affine mapping), (Z) becomes Note (3) and (4) are from the specific form of X;(Z), the
fact {a,, ;}’s are independent of Z; given Z~*, and
1 ) .
:5E{E[(Zi —(a1,iZ; + ao,i))? E(Z% —27,0%|27) = BE(x;22|Z77)
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m E(Z|Z27) = E(x|Z7),
1 2 _ 2 2
:*E{E[(Zi —0°) + (a1,iZi + ag,i) . . . .
n which hold due to the assumptions on N in Section 3.1 and
_ QaLi(Zi? —0?) — an,izﬂz—i]} x being an individual image. Thus, we obtain the Lemma
1+ by obtaining the unbiasedness forallz =1,...,n.
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:E]E [ 2 — )A(z(Z)} 2_ whjch is equiva]ent to [Manuscript, Eq.(3)] when X;(Z) =
noL S am(Z7)Z™ withd € {1,2}. W
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Table 1. PSNR(dB) on Imagel3 and BSD6S.

| Data\Alg. [ FC-AIDEsrr || FC-AIDEsrr (d=2, ag-only) [ FC-AIDEs(d=0) [ FC-AIDEsrr (d=0) |
Imagel3 29.33 20.46 26.99 27.69
BSD68 (avg.) 29.31 19.20 27.66 27.68

2. The unbiasedness of L,, ()

Here, we also experimentally verify the unbiasedness
of Ly, (-) that is analytically shown in Lemma (I} Figure
[ shows the histograms of differences between MSE and
[Manuscript, Eq.(3)] of the FC-AIDEg model, for 100 in-
dependent noise realizations (¢ = 25) on two randomly se-
lected images in BSD68. The mean of the difference clearly
concentrates on O (i.e., unbiased), and the standard devia-
tion is also extremely small, for both images.
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Figure 1. The difference between MSE and Eq.(3) for FC-AIDEs .
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3. Supplementary for Section 4.2
3.1. Ablation study for data augmentation

Figure 2] shows two additional results that use the self-
ensemble data augmentation only for the training (Tr Aug)
or testing (Te Aug) of the fine-tuning. Note “Te Aug” leads
to more improvement, while the full augmentation, which is
employed by our FC-AIDEg.¢r , leads to the highest PSNR
and stable convergence.
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Figure 2. Ablation study on augmentations on BSD68 (o = 25).

From Figure [2| we observe that the maximum PSNR
of FC-AIDEg,pr is achieved around epoch 5, but even
with a single epoch, the PSNR significantly improves over
FC-AIDEg . Each epoch takes about 3 seconds, and

early stopping can lead to the accuracy-complexity trade-
off. Moreover, the running time of each epoch for “No Aug”
was 1.8 second, hence, the running time of the partial aug-
mentation schemes lie in between 1.8s and 3s.

3.2. Hyperparameter selection for /;-SP
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Figure 3. Fine-tuning result on the validation set (o = 25)

Table 2. Selected regularization strength for £2-SP and the stop-
ping epoch for adaptive fine-tuning for each o.

| A for £,-SP | Stopping epoch

c=151] 1x107% 5
c=25] 3x10°* 4
=301 5x10°*% 3
c=50| 2x1073 2
c=751 5x1073 1

As mentioned in [Manuscript, Section 5.1], we used a
separate validation set that consists of 32 natural images
from BSD300 [1]] for selecting the hyper-parameters in our
fine-tuning step (i.e., the stopping epoch and the regulariza-
tion parameter for /5-SP). Note the validation images do not
overlap with our training and test images. We carried out
the validation for each noise level o = {15, 25, 30,50, 75}
separately and selected the best hyper-parameters that gave
the best trade-off between the PSNR and the robustness of
the curve. Figure [3| shows the results for ¢ = 25, for ex-
ample. Note the PSNR results are not very different among
the hyper-parameter choices, and the selection results for all
noise levels are given in Table[2] These hyper-parameters
were used for all our experiments in the paper.



4. Supplementary for Section 5.3

Figure [] shows the PSNR differences between
FC-AIDEg;rr and FC-AIDEg for each test image in
BSD68 with ¢ = 25. Note the adaptive fine-tuning gives
positive PSNR gains for all the images, and the four red
bars indicate the images with the most PSNR improvements
that are visualized in [Manuscript, Figure 4].
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Figure 4. Improvement on BSD68

5. Supplementary for Section 5.4

Here, we emphasize the importance of the polyno-
mial coefficients of FC-AIDEg.pr for denoising. In Ta-
ble m we report the PSNRs on Imagel3 (of BSD68)
as well as the average PSNRs on the entire BSDG68.
Note the visualizations of the pixelwise coefficients are
given in [Manuscript, Figure 7]. In the table, we com-
pare FC-AIDEs,pr With several other baseline models;
FC-AIDEgpr (d=2, ag—only) is a scheme that de-
noises only with the ag terms after learning FC-AIDEg;prt ,
FC-AIDEg (d=0) is a supervised-trained model with set-
ting ay = as = 0, and FC-AIDEg,pr (d=0) is the
model obtained by fine-tuning FC-AIDEg (d=0) using
L,.(-) Manuscript, Eq.(3)).
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Figure 5. Pixelwise errors of
FC-AIDEssrr (d=2, ap—-only) .
Note FC-AIDEgrr (d=2, ag—only) and
FC-AIDEg,pr (d=0) are different schemes, and
they are not equivalent to the regular end-to-end
scheme, since they both do not use Z; and are
adaptively fine-tuned. @~ From the table, we note that
FC-AIDEg:pr (d=2, ap—only) hardly does any de-
noising (as the PSNR of the noisy Imagel3 is 20.16dB),
and FC—-AIDEg.pr (d=0) is also much worse than

FC—-AIDEg+rT and

FC-AIDEg,rr. Figure |§| shows the pixelwise errors on
Imagel3, further demonstrating the importance of a; and
ag in our polynomial model.

6. Visualization

Figure [T0] and [IT] show the clean images used for Set5
and Setl2. Moreover, in Figures [Br9} we visualized
the denoising results on sample images from our evalua-
tion datasets, i.e., Setl2, BSD68, Urban100, Mangal09,
BSD68/Laplacian and Medical/Gaussian. We compare our
FC-AIDEg,rr With the most competitive state-of-the-art
baselines and show the superiority of FC-AIDEg,rr both
quantitatively and qualitatively.



Clean BM3D RED DnCNN - S
(PSNRISSIM) (29.30/0.8418) (29.17/0.8502) (28.89/0.8444)

Barbara, Set12

Noisy [o = 30] Memnet N—AIDEg, pr FC— AIDEg, pr
(18.59/0.3626)  (29.05/0.8521) (28.54/0.8284) (29.61/0.8606)

Starfish,Setl2

L

Noisy [a = 30] N — AIDEg, pr FC— AIDEs,pr

(18.60/0.4328) (28.29/0.8337) (27.84/0.8286)  (28.67/0.8489)

Clean BM3D RED DnCNN - §
(PSNRISSIM) (25.84/0.7756) (27.02/0.8322) (26.84/0.8242)

27th image, BSD68

Noisy [o = 30] Memnet N—AIDEg, pr FC— AIDEg.pr
(18.60/0.4090) (26.93/0.8312) (26.59/0.8151)  (27.03/0.8360)

Figure 6. Denoising results on Set12 and BSD68



66th image, Urban100
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BM3D DnCNN —-S§

Clean

(PSNRISSIM) (28.18/0.8762)  (28.59/0.8786)  (28.04/0.8626)

Noisy [o = 30] Memnet N — AIDEs, pp FC — AIDEg pr
(18.60/0.4989) (28.54/0.8782) (28.25/0.8792)  (30.92/0.9320)

(PSNRISSIM) (27.37/0.9249)  (28.79/0.9436)  (27.53/0.9380)

Noisy [o = 30] Memnet N — AIDEg, pr FC— AIDEg,pr
(18.61/0.5780) (28.54/0.9412) (27.80/0.9332)  (30.19/0.9578)

Clean BM3D RED DnCNN - S
(PSNRISSIM) (24.51/0.8690) (23.99/0.8412) (24.01/0.8403)

Noisy [o = 30] Memnet N —AIDEg pr FC— AIDEg ¢y
(18.57/0.6146)  (23.99/0.8419) (24.71/0.8631)  (27.88/0.9416)

Figure 7. Denoising results on Urban100 and Mangal09



Clean BM3D RED DnCNN — §
(PSNRISSIM) (35.63/0.8803) (36.13/0.9040) (35.96/0.8942)

21th image,
BSD68/Laplacian

Noisy o = 30] Memnet N—AIDEg,;y  FC—AIDEg,pr
(1861/0.0789)  (37.18/0.9289)  (36.28/0.8895)  (37.22/0.9168)

Clean BM3D RED DnCNN — S
(PSNRISSIM) (27.2210.8266) (28.18/0.8578) (27.74/0.8430)

13th image,
BSD68/Laplacian

Noisy [¢ = 30] Memnet N — AIDEg, pr FC— AIDEs, pr
(18.64/0.4654)  (28.13/0.8579) (27.73/0.8420)  (28.21/0.8626)

Figure 8. Denoising results on BSD68/Laplacian

Clean Noisy [o = 30] RED N —AIDEg,.pr  FC—AIDEg,p;r  FC— AIDEy pr
(PSNRISSIM) (18.55/0.1499) (33.80/0.8557) (33.77/0.8588)  (34.14/0.8700)  (34.20/0.8723)

Figure 9. Denoising results on Medical/Gaussian
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Figure 10. Visualization on Set5.

Lena Barbara

House P’ep_pers - Starfish Butterfly Airforce Psittacidae
Figure 11. Visualization on Set12.
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