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1. Proof of Lemma 1
Lemma 1 For any N with the assumptions in [Manuscript,
Section 3.1] and X̂(Z) that has the form [Manuscript,
Eq.(2)] with d ∈ {1, 2},

ELn(Z, X̂(Z);σ2) = EΛn(x, X̂(Z)). (1)

Moreover, when N is white Gaussian, then,
Ln(Z, X̂(Z);σ2) coincides with the SURE [2].

Proof: We note the expectation of the i-th summand in
[Manuscript, Eq.(3)] is

1

n
E
[
(Zi − X̂i(Z))

2 + σ2(

d∑
m=1

2mam,iZ
m−1
i − 1)

]
=
1

n
E
[
E
[
(Zi − X̂i(Z))

2 + σ2(

d∑
m=1

2mam,iZ
m−1
i − 1)

∣∣Z−i
]]

(2)

Now, we divide into two cases, d = 1 and d = 2.
1) For d = 1 (affine mapping), (2) becomes
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2) For d = 2 (polynomial mapping), (2) becomes
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Note (3) and (4) are from the specific form of X̂i(Z), the
fact {am,i}’s are independent of Zi given Z−i, and
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E(Z2
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= E(x2i |Z−i)

E(Zi|Z−i) = E(xi|Z−i),

which hold due to the assumptions on N in Section 3.1 and
x being an individual image. Thus, we obtain the Lemma
by obtaining the unbiasedness for all i = 1, . . . , n.

Furthermore, when N is i.i.d. Gaussian, then the SURE
of Λn(x, X̂(Z)) becomes
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which is equivalent to [Manuscript, Eq.(3)] when X̂i(Z) =∑d
m=0 am(Z−i)Zm

i with d ∈ {1, 2}.
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Table 1. PSNR(dB) on Image13 and BSD68.

Data\Alg. FC-AIDES+FT FC-AIDES+FT(d=2, a0-only) FC-AIDES(d=0) FC-AIDES+FT(d=0)

Image13 29.33 20.46 26.99 27.69
BSD68 (avg.) 29.31 19.20 27.66 27.68

2. The unbiasedness of Ln(·)
Here, we also experimentally verify the unbiasedness

of Ln(·) that is analytically shown in Lemma 1. Figure
1 shows the histograms of differences between MSE and
[Manuscript, Eq.(3)] of the FC-AIDEB model, for 100 in-
dependent noise realizations (σ = 25) on two randomly se-
lected images in BSD68. The mean of the difference clearly
concentrates on 0 (i.e., unbiased), and the standard devia-
tion is also extremely small, for both images.
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Figure 1. The difference between MSE and Eq.(3) for FC-AIDEB .

3. Supplementary for Section 4.2
3.1. Ablation study for data augmentation

Figure 2 shows two additional results that use the self-
ensemble data augmentation only for the training (Tr Aug)
or testing (Te Aug) of the fine-tuning. Note “Te Aug” leads
to more improvement, while the full augmentation, which is
employed by our FC-AIDES+FT , leads to the highest PSNR
and stable convergence.
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Figure 2. Ablation study on augmentations on BSD68 (σ = 25).

From Figure 2, we observe that the maximum PSNR
of FC-AIDES+FT is achieved around epoch 5, but even
with a single epoch, the PSNR significantly improves over
FC-AIDES . Each epoch takes about 3 seconds, and

early stopping can lead to the accuracy-complexity trade-
off. Moreover, the running time of each epoch for “No Aug”
was 1.8 second, hence, the running time of the partial aug-
mentation schemes lie in between 1.8s and 3s.

3.2. Hyperparameter selection for `2-SP
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Figure 3. Fine-tuning result on the validation set (σ = 25)

Table 2. Selected regularization strength for `2-SP and the stop-
ping epoch for adaptive fine-tuning for each σ.

λ for `2-SP Stopping epoch
σ = 15 1× 10−4 5
σ = 25 3× 10−4 4
σ = 30 5× 10−4 3
σ = 50 2× 10−3 2
σ = 75 5× 10−3 1

As mentioned in [Manuscript, Section 5.1], we used a
separate validation set that consists of 32 natural images
from BSD300 [1] for selecting the hyper-parameters in our
fine-tuning step (i.e., the stopping epoch and the regulariza-
tion parameter for `2-SP). Note the validation images do not
overlap with our training and test images. We carried out
the validation for each noise level σ = {15, 25, 30, 50, 75}
separately and selected the best hyper-parameters that gave
the best trade-off between the PSNR and the robustness of
the curve. Figure 3 shows the results for σ = 25, for ex-
ample. Note the PSNR results are not very different among
the hyper-parameter choices, and the selection results for all
noise levels are given in Table 2. These hyper-parameters
were used for all our experiments in the paper.



4. Supplementary for Section 5.3
Figure 4 shows the PSNR differences between

FC-AIDES+FT and FC-AIDES for each test image in
BSD68 with σ = 25. Note the adaptive fine-tuning gives
positive PSNR gains for all the images, and the four red
bars indicate the images with the most PSNR improvements
that are visualized in [Manuscript, Figure 4].

Figure 4. Improvement on BSD68

5. Supplementary for Section 5.4
Here, we emphasize the importance of the polyno-

mial coefficients of FC-AIDES+FT for denoising. In Ta-
ble 1, we report the PSNRs on Image13 (of BSD68)
as well as the average PSNRs on the entire BSD68.
Note the visualizations of the pixelwise coefficients are
given in [Manuscript, Figure 7]. In the table, we com-
pare FC-AIDES+FT with several other baseline models;
FC-AIDES+FT(d=2, a0-only) is a scheme that de-
noises only with the a0 terms after learning FC-AIDES+FT ,
FC-AIDES(d=0) is a supervised-trained model with set-
ting a1 = a2 = 0, and FC-AIDES+FT(d=0) is the
model obtained by fine-tuning FC-AIDES(d=0) using
Ln(·) (Manuscript, Eq.(3)).

Figure 5. Pixelwise errors of FC-AIDES+FT and
FC-AIDES+FT(d=2, a0-only) .

Note FC-AIDES+FT(d=2, a0-only) and
FC-AIDES+FT(d=0) are different schemes, and
they are not equivalent to the regular end-to-end
scheme, since they both do not use Zi and are
adaptively fine-tuned. From the table, we note that
FC-AIDES+FT(d=2, a0-only) hardly does any de-
noising (as the PSNR of the noisy Image13 is 20.16dB),
and FC-AIDES+FT(d=0) is also much worse than

FC-AIDES+FT. Figure 5 shows the pixelwise errors on
Image13, further demonstrating the importance of a1 and
a2 in our polynomial model.

6. Visualization
Figure 10 and 11 show the clean images used for Set5

and Set12. Moreover, in Figures 6∼9, we visualized
the denoising results on sample images from our evalua-
tion datasets, i.e., Set12, BSD68, Urban100, Manga109,
BSD68/Laplacian and Medical/Gaussian. We compare our
FC-AIDES+FT with the most competitive state-of-the-art
baselines and show the superiority of FC-AIDES+FT both
quantitatively and qualitatively.



Figure 6. Denoising results on Set12 and BSD68



Figure 7. Denoising results on Urban100 and Manga109



Figure 8. Denoising results on BSD68/Laplacian

Figure 9. Denoising results on Medical/Gaussian



Figure 10. Visualization on Set5.

Figure 11. Visualization on Set12.
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