
Supplementary Material for HistoSegNet: Weakly-Supervised Semantic
Segmentation of Histological Tissue Type in Digital Pathology

A Detailed Methodology Description in
Mathematical Notation

In this section, we describe in detail the constituent oper-
ations of the four-stage HistoSegNet methodology in math-
ematical notation (as shown in Figure 1). Each black-box
stage is investigated in further detail in the following sub-
sections.

Our intention is to clarify the precise operations used
in our methodology with a consistent notation (hence the
slightly different notation from that used in the main paper)
and we direct the reader to more thorough works written by
others for more complete treatment of CNNs, Grad-CAM,
and fully-connected CRFs. For higher-level explanation of
the methodology and rationales behind the design choices,
we refer the reader to the main paper.

A.1 Patch-level HTT classification CNN

Our CNN is a shortened, multi-label variant of the
VGG16 architecture, with 7 convolutional layers, a global
max pooling layer, and a single fully-connected layer. It
takes as input an RGB patch image X = A(0) of size
N × N × 3, outputting (1) a continuous confidence score
vector y and (2) a boolean prediction p, both of size C, the
number of HTTs.

Each of the ` ∈ {1, · · · , 7} convolutional layers take
an input feature map A(`−1) sized N`−1 × N`−1 × D`−1
and convolves it with the convolutional kernels W(`) sized
M` ×M` × D`−1 × D` to produce an output feature map
A(`) of size N` × N` × D`. This is followed by a ReLU
activation, batch normalization, and either a dropout or max
pooling layer. We provide the equations for each type of
layer below.

Convolutional Layer.

Â
(`)
d ←

D`−1∑
d′=1

A
(`−1)
d′ ∗W(`)

d′,d, ∀d ∈ {1, · · · , D`} (1)

ReLU Activation Layer (Feature Extractor).
Â(`) ← max(Â(`), 0) (2)

Batch Normalization Layer. For the b-th batch,

{Â(`)}b ← γ`
{Â(`)}b − E[{Â(`)}b]√

Var[{Â(`)}b] + ε
+β`, ∀b ∈ {1, · · · , B}.

(3)
Dropout Layer.

Â
(`)
d ←

{
Â

(`)
d , with probability 1− P`

0, with probability P`
, ∀d ∈ {1, · · · , D`}.

(4)
Max Pooling Layer.

A(`)(i, j)← max
(i′,j′)∈P(`)

(i,j)

(
Â(`)(i′, j′)

)
, (5)

where P(`)
(i,j) ∈ R2×2 is a 2 × 2 window around the pixel

(i, j).
Global Max Pooling Layer.

ad ← max
(i′,j′)∈P(7)

(
A

(7)
d (i′, j′)

)
, (6)

where P(7) ∈ RN7×N7 is the entire receptive field of the
final convolutional layer’s output.

Fully Connected Layer.

ŷc ←
D(7)∑
d=1

adwd,c, c ∈ {1, · · · , C} (7)

ReLU Activation Layer (Classifier).
ŷ← max(ŷ, 0) (8)

Sigmoid Layer.

y← 1

1 + exp(−ŷ)
(9)

Thresholding Layer.
pc ← [yc ≥ θc], c ∈ {1, · · · , C} (10)

A.2 Pixel-level HTT Segmentation
Grad-CAM.
In the Grad-CAM method proposed by [1] to infer pixel-

level class activation in a CNN, a partial backpropagation
is conducted from the confidence score yc to the final acti-
vation output Â(7)

d (before pooling) to obtain the gradient
∂yc

∂Â
(7)
d

. Then, we obtain the “class feature weight” between

c and d as follows:

4321



Figure 1. The overall patch processing pipeline of HistoSegNet for a given patch, expressed as a sequence of black-box operations: the
inputs to the pipeline are the input patch X and the class thresholds θ, the outputs are the class confidence scores p, the Class-Specific
Grad-CAMs Umorph,Ufunc, and the predicted segmentations Pmorph,Pfunc.

Figure 2. Expanded view of the CNN’s constituent operations.

αc,d ←
1

N2
7

N7∑
i=1

N7∑
j=1

∂yc

∂Â
(7)
d (i, j)

(11)

And the corresponding Grad-CAM (sized N7 ×N7) is:

Ũc ← ReLU

(
D7∑
d=1

αc,dÂ
(7)
d

)
(12)

Finally, the Grad-CAM is upsampled back to the original
image size N ×N using bilinear interpolation and normal-
ized by its 2D maximum as follows:

Ũc ←
Ũc

max(Ũc)
(13)

.
Scaling by HTT Confidence Scores.
The Grad-CAM is then scaled by the boolean-

thresholded patch-level HTT confidence scores yc · pc in
order to ignore non-confident HTT predictions and boost
confident predictions relative to less-confident predictions:

Ûc ←

{
yc

ˆ̃Uc, if pc = 1

0, if pc = 0
(14)

Then, the Grad-CAMs are split into morphological
(Ûmorph) and functional (Ûfunc) types for separate process-
ing.

A.3 Inter-HTT Adjustments
Background Activation.
We produce our background activation map two steps:

first, the smooth white-illumination image ÛB is obtained
by applying a scaled-and-shifted sigmoid to the mean-RGB
image X; then, we subtract the appropriate transparent-

staining class activations, and finally we filter with a 2D
Gaussian blur Uµ,σ to reduce the prediction resolution:

ÛB ←
0.75

1 + exp
[
−4(X− 240)

]
Ûmorph
B ← (ÛB −max(ÛA.W, ÛA.B)) ∗U0,2

Ûfunc
B ← (ÛB −max(ÛG.O, ÛG.N, ÛT)) ∗U0,2. (15)

“Other” Activation.
To generate our non-functional tissue activation map,

we first take the maximum of: (1) other functional
type activations Ûfunc

c , (2) adipose activations ÛA =
max(ÛA.W, ÛA.B), and (3) background activation Ufunc

B .
Then, we subtract this activation from one, scale it:

Ûfunc
O ← 0.05

[
1−max

(
{Ûfunc

c }Cc=1, Û
func
B , ÛA

)]
.

(16)
Depth Concatenation.

Umorph ← {Ûmorph
B , {Ûmorph

c }C
morph

c=1 } (17)
Cmorph ← Cmorph + 1 (18)

Ufunc ← {Ûfunc
B , Ûfunc

O , {Ûfunc
c }C

func

c=1 } (19)
C func ← C func + 2 (20)

A.4 Post-process HTT Segmentation
Borrowing some notation from [2], we can express

the fully-connected CRF as an iteratively-updated mean
field approximation. Note that, for the rest of this sec-
tion, we adopt the notations (U,P, C) as short-hand for
(Umorph,Pmorph, Cmorph) and (Ufunc,Pfunc, C func), since the
morphological and functional types are post-processed in



Figure 3. Expanded view of the pixel-level HTT segmentation’s (i.e. Grad-CAM) constituent operations.

Figure 4. Expanded view of the Inter-HTT Adjustment’s constituent operations.

the same way. Further, we chose to run CRF for a fixed
number of iterations as the convergence criterion.

Data: U,X, {µ(c, c′)}c,c′ , {w(m)}m, {k(m)}m
Result: P
for (i, j) ∈ NN×N , c ∈ {1, · · · , C} do

Z(i, j)←
C∑
c=1

exp (−Uc(i, j)) ; // (1)

Qc(i, j)← 1
Z(i,j) exp (−Uc(i, j))

end
while not converged do

for (i, j) ∈ NN×N , c ∈ {1, · · · , C} do
Q̃

(m)
c (i, j)←∑

(i,j) 6=(i′,j′) k
(m) (f(i, j), f(i′, j′))Qc(i

′, j′)

; // (2)

Q̌c(i, j)←
∑M
m=1 w

(m)Q̃
(m)
c (i, j) ;

// (3)

Q̂c(i, j)←
∑C
c′=1 µ(c, c′)Q̌c(i, j) ;

// (4)

Q̆c(i, j)← −Uc(i, j)− Q̂c(i, j) ; // (5)

Z(i, j)←
∑C
c=1 exp

(
Q̆c(i, j)

)
; // (6)

Qc(i, j)← 1
Z(i,j) exp

(
Q̆c(i, j)

)
end

end
P (i, j)← argmax

c∈{1,··· ,C}
(Qc(i, j)) ; // (7)

Algorithm 1: Fully-connected CRF, expressed in algo-
rithmic form

(1) Initialization (Softmax). In the first step of the CRF
(1), the unary potentials are initialized from −U, the neg-
ative Grad-CAM activation, at all pixel locations (i, j) for
each of the c-th HTTs, by applying the softmax function.
This ensures that all the potentials at each pixel location

sum up to one across all HTTs.

(2) Message Passing (N2 × 5-Convolution). Next, in
order to encode the local feature relations between pix-
els and pass the “message” from all pixels (i′, j′) in a
pairwise fashion to all pixels (i, j), we do the follow-
ing. First, the image features are extracted at each pixel
by concatenating the pixel locations and RGB values:
f(i, j) = [i, j,XR(i, j), XG(i, j), XB(i, j)]. Then, the
m ∈ {1, · · · ,M}-th Gaussian kernel k(m) ∈ RN2×5 is
applied and the unary potentials’ feature distances are used
to weigh all other pixels’ unary potential values Qc(i′, j′)
and are summed up for all (i′, j′).

(3) Weighting Filter Outputs (1 × 1 × M × 1-
Convolution). Then the M filter outputs are weighted and
summed with fixed weights w(m).

(4) Compatibility Transform (1 × 1 × C × 1-
Convolution). To encode the compatibility relations be-
tween HTTs and transform the message from all HTTs c′

in a pairwise fashion to all HTTs c, we do the following.
First, we weight all the incoming features for a given HTT
c at a fixed location (i, j) by its compatibility weights with
all other HTTs c′, µ(c, c′). Then, we sum up across the
other HTTs.

(5) Local Update (Addition). The potential at each
pixel location Uc(i, j) is updated by adding its update value
Q̂c(i, j).

(6) Normalizing (Softmax). And then, in order to en-
sure that the potentials at each pixel location sum up to one
across all HTTs before the next iteration of the algorithm,
we apply the softmax function.

(7) Argmax. Once the algorithm has converged, we ap-
ply the argmax function to the potentials at each pixel loca-
tion across all HTTs c ∈ {1, · · · , C} in order to obtain the
most-confident HTT prediction at each pixel.



Figure 5. Expanded view of the Segmentation Post-Processing’s constituent operations.

B Additional Pathologist Slide Segmentation
Validation

In Figure B, we present additional segmentation masks
of morphological and functional types for additional gas-
trointestinal slides and in Figure B, we do the same for other
organ systems (e.g. thyroid, lymphatic, breast). For the rest
of this section, we present additional comments and feed-
back from the validating pathologist on five select slides that
we omitted from the main paper for reasons of space.

C Comparison with Competitive GlaS Gland
Segmentation Algorithm

In this section, we compare the performance of His-
toSegNet against that of another gland segmentation algo-
rithm on the GlaS Challenge dataset by Gaudet et al.1, who
train a U-Net-like Encoder-Decoder CNN with skip connec-
tions between different convolutional layers. Their model
consists of five convolutional blocks of two convolutional
layers each, with skip connections between the second and
third blocks, and between the first and fourth blocks. Leaky
ReLU activation and spatial dropout regularization are also
used. Training is conducted with binary cross-entropy loss
on the provided binary gland segmentation masks provided
by the GlaS challenge.

The GlaS data consists of five different combinations of
Tumor classes i.e. Healthy (H), Adenomatous (A), Mod-
erately differentiated (M), Poorly-to-Moderately differenti-
ated (PM), and Poorly differentiated (P). Each image patch
is annotated at the pixel level (done by pathologists) by cre-
ating a binary mask image separating between glandular
and non-glandular areas. Note that Gaudet et al.’s method
has been trained only on two different classes introduced
by the binary masks (‘0’ for non-gland, and ‘1’ for gland),
where all five tumor classes are treated the same, since they
belong to the glandular areas. In contrast, our proposed
method HistoSegNet is trained on the ADP database to clas-
sify between different healthy tissue classes and is applied
to segment out the glands in GlaS without retraining.

As the range of healthiness of glands in GlaS dataset
varies from healthy to poorly differentiated, the prediction

1https://github.com/gaudetcj/GlandSegmentation

of such cancerous grades becomes less confident for His-
toSegNet. This is shown visually in Figure 14 for five
different grades, where Gaudet et al.’s method is well ca-
pable of segmenting out the glands regardless of their tu-
mor grade but the prediction of HistSegNet becomes vis-
ibly less confident with worsening tumor grade. Further-
more, we analyze demonstrate the evaluation performance
of both methods numerically in terms of all five different
tumor grades in Figure 15. HistoSegNet yields better dif-
ferentiability between healthy and all four different cancer
grades than Gaudet et al.’s method. For instance, HistoSeg-
Net yields 18.57% drop in Dice score from healthy ‘H’ to
the next best performing class ‘M’, while this is only 5.23%
drop from healthy to the second best Dice score i.e. ‘MP’.
Moreover, HistoSegNet provides consistent differentiabil-
ity across two different scores of Dice and Hausdorff, while
Gaudet et al.’s method confuses the rank order between
healthy and the other four cancer classes across Hausdorff
score (intuitively, Dice and Hausdorff should be worsen-
ing with worsening tumor grades. Overall, HistoSegNet’s
performance deterioration from healthy to poorly differenti-
ated tumorous glands is relatively more distinguishable than
with a comparable gland segmentation algorithm.

References
[1] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,

Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-
cam: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE International
Conference on Computer Vision, pages 618–626, 2017. 4321

[2] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-
Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang
Huang, and Philip HS Torr. Conditional random fields as
recurrent neural networks. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 1529–1537,
2015. 4322

https://github.com/gaudetcj/GlandSegmentation


Figure 6. HTT Segmentation Mask Legend, for both Morphological and Functional types.

Figure 7. Morphological and Functional Segmentation on Gastrointestinal Tissues: (A) colon, (B) pylorus, (C) jejunum/ileum, (D) je-
junum/ileum, and (E) jejunum/ileum.



Figure 8. Morphological and Functional Segmentation on other tissues: (F) lymphatic tissue, (G) liver, (H) vertebrae, (I) glandular (?), (J)
thyroid, and (K) breast.



Figure 9. Pathologist’s Validation Notes on Slide C: original image(s) are shown at left, morphological segmentation shown at top, func-
tional segmentation shown at bottom, and annotated regions shown at right.



Figure 10. Pathologist’s Validation Notes on Slide D: original image(s) are shown at left, morphological segmentation shown at top,
functional segmentation shown at bottom, and annotated regions shown at right.



Figure 11. Pathologist’s Validation Notes on Slide G: original image(s) are shown at left, morphological segmentation shown at top,
functional segmentation shown at bottom, and annotated regions shown at right.



Figure 12. Pathologist’s Validation Notes on Slide J: original image(s) are shown at left, morphological segmentation shown at top,
functional segmentation shown at bottom, and annotated regions shown at right.



Figure 13. Pathologist’s Validation Notes on Slide K: original image(s) are shown at left, morphological segmentation shown at top,
functional segmentation shown at bottom, and annotated regions shown at right.



Figure 14. HistoSegNet vs. Gaudet et al.’s gland segmentation algorithm on GlaS challenge images, visually compared at different tumor
grades: note how the performance of HistoSegNet steadily degrades with worsening tumor grade while Gaudet et al.’s method remains
relatively stable throughout.
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(a) Single Gland mode, Dice index
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(b) Single Gland mode, Hausdorff distance
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(c) Multiple Gland mode, Dice index
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(d) Multiple Gland mode, Hausdorff distance

Figure 15. HistoSegNet vs. Gaudet et al.’s gland segmentation algorithm, assessed quantitatively at different tumor grades in four modes:
(1) Single gland and Dice index, (2) Single gland and Hausdorff distance, (3) Multiple gland and Dice index, and (4) Multiple gland
and Hausdorff distance. The tumor grades are abbreviated as follows: Healthy (H), Adenomatous (A), Moderately differentiated (M),
Moderately-to-Poorly differentiated (MP), and Poorly differentiated (P).


