
A. Appendix
A.1. Generalized Coordinate Transformation

In Sec. 3.4 we have assumed σHW=σ̂HW and σVU=σ̂VU.
Here we relax this condition and only assume σHW=σ̂HW.
Again, we still have the following two relations for x, u:
x+αu=x̂ and x=x̂−α̂û. Solving for x̂ and û gives:
x̂=x+αu and û=α

α̂u. Then align2nat is:

F(v, u, y, x) = F̂(
α

α̂
v,
α

α̂
u, y+αv, x+αu). (2)

More generally, consider arbitrary units σHW, σ̂HW, σVU,
and σ̂VU. Then the relations between the natural and aligned
representation can be rewritten as:{

x·σHW+u·σVU = x̂·σ̂HW
x·σHW = x̂·σ̂HW−û·σ̂VU

(3)

Note that these relations only hold in the image pixel do-
main (hence the usage of all units). Solving for x̂, û gives:{

x̂ = σHW
σ̂HW

x+ σVU
σ̂HW

u

û = σVU
σ̂VU

u
(4)

And the align2nat transform becomes:

F(v, u, y, x) = F̂(
σVU

σ̂VU
v,
σVU

σ̂VU
u,
σHW

σ̂HW
y+

σVU

σ̂HW
v,
σHW

σ̂HW
x+

σVU

σ̂HW
u). (5)

This version of the coordinate transformation demonstrates
the role of units and may enable more general uses.

A.2. Aligned Representation and InstanceFCN

We prove that the InstanceFCN [7] output behaves as an
upscaling aligned head with nearest-neighbor interpolation.

In [7], each output mask has V×U pixels that are divided
intoK×K bins. A mask pixel is read from the channel cor-
responding to the pixel’s bin. In our notation, [7] predicts G
which is related to the natural representation F by:

F(v, u, y, x) = G([
K

V
v], [

K

U
u], y + v, x+ u), (6)

where [·] is a rounding operation and the integers [KV v] and
[KU u] index a bin. Now, define a new function F̃ by:

F̃(v, u, y+v, x+u) , G([
K

V
v], [

K

U
u], y+v, x+u), (7)

and new coordinates: x̃=x+u and ũ=u (likewise for v and
y). Then F̃ can be written as:

F̃(ṽ, ũ, ỹ, x̃) , G([
K

V
ṽ], [

K

U
ũ], ỹ, x̃). (8)

Eqn.(8) says that F̃ is the nearest-neighbor interpolation of
G on (Ṽ , Ũ). Eqn.(7), (6), and the new coordinates show
that F is computed from F̃ by the align2nat transform
with α=1. Thus, InstanceFCN masks can be constructed
in the TensorMask framework by predicting G, performing
nearest-neighbor interpolation of G on (Ṽ , Ũ) to get F̃ , and
then using align2nat to compute natural masks F .

A.3. Object Detection Results

In Tab. 4 we show the associated bounding-box (bb) ob-
ject detection results. Overall, TensorMask has a compara-
ble box AP with Mask R-CNN and outperforms RetinaNet.

method aug epochs APbb APbb
50 APbb

75

RetinaNet, ours 24 37.1 55.0 39.9
RetinaNet, ours X 72 39.3 57.2 42.4
Faster R-CNN, ours X 72 40.6 61.4 44.2
Mask R-CNN, ours X 72 41.7 62.5 45.7
TensorMask, box-only X 72 40.8 60.4 43.9
TensorMask X 72 41.6 61.0 45.1

Table 4. Object detection box AP on COCO test-dev. All
models use ResNet-50-FPN. ‘TensorMask, box-only’ is our model
without the mask head: it resembles RetinaNet but with the mask-
driven assignment rule and only 2 window sizes instead of 9 [23].

A.4. Mask-Only TensorMask

One intriguing property of TensorMask is that masks are
not dependent on boxes. This not only opens up new model
designs that are mask-specific, but also allows us to investi-
gate whether box predictions improve masks in a multi-task
setting. Here, we conduct experiments without the use of a
box head. Note that although we predict masks densely, we
still need to perform NMS for post-processing. If regressed
boxes are absent, we simply use the bounding boxes of the
masks as a substitute (and also to report box AP).

Tab. 5 gives the results. We observe a slight degradation
switching from the default setting which uses original boxes
(row 1) for NMS to using mask bounding boxes (row 2).
After accounting for this, TensorMask without a box head
(row 3) has nearly equal mask AP to the mask+box variant
(row 2). These results indicate that the role of the box head
is auxiliary in our system, in contrast to Mask R-CNN.

box head NMS AP AP50 AP75 APbb APbb
50 APbb

75

X bb 35.2 56.4 37.0 41.6 60.8 44.8
X mask-bb 34.9 56.0 36.7 39.7 59.1 41.8

mask-bb 34.8 56.1 36.7 39.4 58.8 41.6

Table 5. Multi-task benefits of box training for mask prediction
on COCO val2017 with our final ResNet-50-FPN model.

A.5. Qualitative Comparisons and Calibration

We show more results in Figs. 10 and 11. For these, and
all visualizations in the main text, we display all detections
that have a calibrated score ≥0.6. We use a simple cali-
bration that maps uncalibrated detector scores to precision
values: for each model and for each category, we compute
its precision-recall (PR) curve on val2017. As a PR curve
is parameterized by score, we can map an uncalibrated score
for the detector-category pair to its corresponding precision
value. Score-to-precision calibration enables a fair visual
comparison between methods using a fixed threshold.
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Figure 10. More results of Mask R-CNN [17] (top row per set) and TensorMask (bottom row per set) on the last 65 val2017 images
(continued in Fig. 11). These models use a ResNet-101-FPN backbone and obtain 38.3 and 37.1 AP, on test-dev, respectively. Visually,
TensorMask gives sharper masks compared to Mask R-CNN although its AP is 1 point lower. Best viewed in a digital format with zoom.
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Figure 11. More results of Mask R-CNN [17] (top row per set) and TensorMask (bottom row per set) continued from Fig. 10.
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[1] Pablo Arbeláez, Jordi Pont-Tuset, Jonathan T Barron, Fer-

ran Marques, and Jitendra Malik. Multiscale combinatorial
grouping. In CVPR, 2014. 2

[2] Anurag Arnab and Philip HS Torr. Pixelwise instance
segmentation with a dynamically instantiated network. In
CVPR, 2017. 3

[3] Min Bai and Raquel Urtasun. Deep watershed transform for
instance segmentation. In CVPR, 2017. 3

[4] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaox-
iao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi,
Wanli Ouyang, et al. Hybrid task cascade for instance seg-
mentation. arXiv:1901.07518, 2019. 2

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Semantic image segmen-
tation with deep convolutional nets and fully connected crfs.
In ICLR, 2015. 3

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
2016. 2, 3

[7] Jifeng Dai, Kaiming He, Yi Li, Shaoqing Ren, and Jian Sun.
Instance-sensitive fully convolutional networks. In ECCV,
2016. 2, 3, 4, 7, 8, 9

[8] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware se-
mantic segmentation via multi-task network cascades. In
CVPR, 2016. 2

[9] Piotr Dollár, Zhuowen Tu, Pietro Perona, and Serge Be-
longie. Integral channel features. In BMVC, 2009. 1

[10] Pedro F Felzenszwalb, Ross B Girshick, David McAllester,
and Deva Ramanan. Object detection with discriminatively
trained part-based models. PAMI, 2010. 1, 4

[11] Ross Girshick. Fast R-CNN. In ICCV, 2015. 3
[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In CVPR, 2014. 2

[13] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr
Dollár, and Kaiming He. Detectron. https://github.
com/facebookresearch/detectron, 2018. 7, 8

[14] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
SGD: Training ImageNet in 1 hour. arXiv:1706.02677, 2017.
7

[15] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Ji-
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