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1. Visualization of Parallax

Sometimes it is difficult to appreciate the amount of par-
allax in the synthesized views. To make parallax more ap-
parent, we can first align the extreme views at a pixel in the
background and flip between them. Figure 1 shows exam-
ples of this. Please view the figure in Adobe Reader, or any
other media-enabled reader to play the animation.

Figure 1: Synthesized views aligned at the background to
better show Parallax. The images will flip between the
two extreme views each time they are clicked on it in
Acrobat Reader.

2. Animations for the results in Figure 10

In Figure 10 of the paper we only show the extreme
views that we generated. Please refer the videos accom-
panying this Supplementary document to see all of the in-
termediate frames we generate, which also empirically in-
dicate that our method is temporally stable and that the syn-
thesized images are physically accurate.

3. Comparison to Stereo Magnification
To showcase the ability of our algorithm to deal with ex-

treme viewpoint changes, in the paper we show 30× mag-
nification factors on the data by Stereo Magnification [2].
For convenience, we also show these results in Figure 2-4
here. However, it is also worth showing that at 4.5× the
baseline magnification, both the method by Zhou et al. and
ours work fine, as shown here in Figure 5-7.

4. The Threshold and the Weights for View
Synthesis

The Threshold In Section 5 of the paper, we introduce
the equation for synthesizing a view. The threshold t for the
view synthesis is set as:

t = 0.075 ·max
(
DNV(x, y, ·)

)
, (1)

where max
(
DNV(x, y, ·)

)
indicates the maximum depth

probability for pixel (x, y) in the novel view.

The Weights R in Equation 1 of the paper is a function
that merges pixels from Ii weighting them based on the
distance of the cameras’ centers, and the angles between
the cameras’ principal axes. It is defined as:

N∑
i=1

wdi
wai
Ii(xi, yi)

wdiwai

, (2)

where wdi
and wai

is the distance weight and the angle
weight of i-th input camera, respectively, with respect to
the camera of the novel view. Further, the distance weight
is defined as

wdi
= α · exp(−dist

(
pi, p

NV) /σ2
d), (3)

where pi and pNV are the positions of the i-th input camera
and the novel camera. The function dist(·) computes the
Euclidean distance between two point. Similarly,

wai
= α · exp(−ang

(
vi,v

NV) /σ2
a), (4)
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(a) input image (left) (b) input image (right)

(c) 30x Stereo Magnification (left) (d) 30x Stereo Magnification (right)

(e) 30x ours (left) (f) 30x ours (right)

Figure 2: We extended the baseline of a stereo image pair by 30 times. The input images pair is shown in the first row in (a)
and (b). The results from Stereo Magnification is shown in (c) and (d). Our view synthesis are placed in (e) and (f) of the last
row.



(a) input image (left) (b) input image (right)

(c) 30x Stereo Magnification (left) (d) 30x Stereo Magnification (right)

(e) 30x ours (left) (f) 30x ours (right)

Figure 3: We extended the baseline of a stereo image pair by 30 times. The input images pair is shown in the first row in (a)
and (b). The results from Stereo Magnification is shown in (c) and (d). Our view synthesis are placed in (e) and (f) of the last
row.



(a) input image (left) (b) input image (right)

(c) 30x Stereo Magnification (left) (d) 30x Stereo Magnification (right)

(e) 30x ours (left) (f) 30x ours (right)

Figure 4: We extended the baseline of a stereo image pair by 30 times. The input images pair is shown in the first row in (a)
and (b). The results from Stereo Magnification is shown in (c) and (d). Our view synthesis are placed in (e) and (f) of the last
row.



(a) input image (left) (b) input image (right)

(c) 4.5x Stereo Magnification (left) (d) 4.5x Stereo Magnification (right)

(e) 4.5x ours (left) (f) 4.5x ours (right)

Figure 5: We extended the baseline of a stereo image pair by 4.5 times. The input images pair is shown in the first row in (a)
and (b). The results from Stereo Magnification is shown in (c) and (d). Our view synthesis are placed in (e) and (f) of the last
row.



(a) input image (left) (b) input image (right)

(c) 4.5x Stereo Magnification (left) (d) 4.5x Stereo Magnification (right)

(e) 4.5x ours (left) (f) 4.5x ours (right)

Figure 6: We extended the baseline of a stereo image pair by 4.5 times. The input images pair is shown in the first row in (a)
and (b). The results from Stereo Magnification is shown in (c) and (d). Our view synthesis are placed in (e) and (f) of the last
row.



(a) input image (left) (b) input image (right)

(c) 4.5x Stereo Magnification (left) (d) 4.5x Stereo Magnification (right)

(e) 4.5x ours (left) (f) 4.5x ours (right)

Figure 7: We extended the baseline of a stereo image pair by 4.5 times. The input images pair is shown in the first row in (a)
and (b). The results from Stereo Magnification is shown in (c) and (d). Our view synthesis are placed in (e) and (f) of the last
row.



where vi and vNV are the unit view vector of the i-th input
camera and the novel camera. We assume that the angle
between two view vectors is smaller than 90 degree. The
function ang (·) corresponds to

∣∣vi · vNV
∣∣. We set α = 100,

σd = 0.2, and σa = 0.4.

5. The Refinement Network
The Model Our refinement network, introduced in Sec-
tion 6.1 of the paper, has the form of UNet that extracts
multi-level features and has skip connections from the en-
coder to decoder. The details of each layer in our model is
summarized in Table 1.

Training The weights are initialized by Xavier initializa-
tion. Batch normalization layers are attached after every
convolution layers. We use ADAM optimizer. The initial
learning rate lr0 is set to 0.0001. We schedule the learning
rate to reduce every epoch using the exponential decay as
follows:

lri = lr0 · 0.92i, (5)

where i refers to the epoch index. We perform the training
for 40 epochs. To train we use the MVS-Synth dataset [1].
From MVS-Synth dataset, we take 9 consecutive frames
{F1, F2, ..., F9}, and set {F3, F4, F6, F7} as source views.
Setting the novel perspective to the rest of the frames, we
synthesize new views {F̃1, F̃2, F̃5, F̃8, F̃9} to use them as
inputs to the refinement network.
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Layer k s in out bnorm input
enc 1 1 3 1 3 128 N an image patch P̃
enc 1 2 3 1 128 128 Y enc 1 1
enc 1 3 3 2 128 256 Y enc 1 2
enc 2 1 3 1 256 256 Y enc 1 3
enc 2 2 3 2 256 512 Y enc 2 1
enc 3 1 3 1 512 512 Y enc 2 2
enc 3 2 3 2 512 512 Y enc 3 1
dec 1 1 3 1 1024 512 Y P̃NV enc 3 2 + M enc 3 2
dec 1 2 3 1 512 512 Y dec 1 1
dec 1 3 3 up 512 512 Y dec 1 2
dec 2 1 3 1 1536 512 Y P̃NV enc 3 1 + M enc 3 1 +dec 1 3
dec 2 2 3 1 512 512 Y dec 2 1
dec 2 3 3 up 512 256 Y dec 2 2
dec 3 1 3 1 768 256 Y P̃NV enc 2 1 + M enc 2 1 +dec 2 3
dec 3 2 3 1 256 256 Y dec 3 1
dec 3 3 3 up 256 128 Y dec 3 2
dec 4 1 3 1 374 128 Y P̃NV enc 1 2 + M enc 1 2 +dec 3 3
dec 4 2 3 1 128 128 Y dec 4 1
dec 4 3 3 1 128 3 N dec 4 2

Table 1: The encoder architecture of our refinement network in Section 6 of the paper, where Layer is the name of layers,
k is the kernel size, s is the stride, in and out are the number of input and output channels, bnorm indicates whether there
is a batch-normalization layer attached, and input refers to the input of each layer. The layers in the encoder have the name
beginning with enc, and those in the decoder take dec as a prefix. The layers, dec 1 1, dec 2 1, dec 3 1, and dec 4 1,
take the feature of P̃NV and the maxpooled features from P̂i,j . The names of these features are prefixed with P̃NV and M,
respectively. up in the column s indicates that 2x-upsampling is performed on the input of the layer. Every layer except the
last layer dec 4 3 is activated by ReLU activation function.
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