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Figure 9: The detailed structure of the proposed spatial behavior encoder and temporal interaction encoder of our gated

relation encoder. Given τ number of past images, the network first encodes spatial features using a set of 2D convolutional

layers (C1 − C8) from each region of the discretized grid. The resulting features {s1, ..., sn} are concatenated along the time

axis to form S. Then, we run a 3D convolution (C9) with additional 2D convolutions (C10 − C11) to extract spatio-temporal

interactions O. The inscribed numbers denote [the number of filters x (its width, height), and stride]. For 3D convolution, we

use (its depth, width, height). Every layer comes with a ReLU activation function at the end. We also use a dropout layer

after C6 (with a ratio 0.2) and C8 (with a ratio 0.5).

This document serves as supplementary materials to our

paper Looking to Relations for Future Trajectory Forecast.

7. Architecture

7.1. Gated Relation Encoder

We visualize the network architecture of the proposed

gated relation encoder (GRE) in Figure 9 and Figure 10.

The network first encodes frame-wise feature representa-

tions of the road structures, the road topology, and the

appearance of road users through 2D convolutional layers

(C1−C8) as shown in Figure 9. Then, we concatenate spa-

tial features along the time axis to construct a spatial feature

description S that knowledge road users and road structures

in each region of discretized grid. The subsequent 3D con-

volutional layer models transition patterns of each spatial

region and build spatio-temporal representations O. Each

cell oi of O = {o1, ..., on} contains an interpretation of

spatial behavior of all road users in a specific grid space

and their temporal interactions with the environment.

The subsequent relation gate module (RGM) displayed

Figure 10: The structure of the proposed relation gate mod-

ule. The notations are as follows: FC - fully connected

[output size, activation function, dropout ratio], Conv1D -

1D convolution [the number of filters x (its width), stride],
and LSTM - long short term memory unit [length, output

size]. The symbols for operations are shown in the main

manuscript.

in Figure 10. The RGM is designed to infer pair-wise re-

lations from spatio-temporal interactions (i.e., objects). A



Figure 11: The architecture of the trajectory prediction network used to generate δ number of activations Ĥk
A which corre-

spond to δ future locations. D is a deconvolutional layer and h is an output feature map. The inscribed numbers denote [the

number of filters x (its width, height), stride]. Each deconvolutional layer comes with a ReLU activation function at the end.

Figure 12: The architecture of the spatial refinement network. In the first stage, C12−C17 graudally decreases the dimen-

sionality of hD5. We use a max pooling layer after C13, C15, and C17. Next, the concatenated activations hC17 ⊠ hD2 are

upsampled through four deconvolutional layers that come with a 1 x 1 and 7 x 7 convolution. We use ReLU activations with

all convolutional and deconvolutional layers.

pair of objects (oi, oj) is inputted into our RGM to deter-

mine whether relations between the given objects would af-

fect the target road users potential path through FC1 and

FC2. By considering the motion history qk of the target road

user k, the RGM identifies how their relations can affect the

future motion of the target k based on its past motion con-

text qk. We collect all relational information fk
ij and per-

form element-wise sum to produce target-specific relational

features Fk.

7.2. Trajectory Prediction Network

Given a relational state F , our trajectory prediction net-

work (TPN) in Figure 11 constructs δ number of activations

A which can be used to compute future locations. For this,

we use six deconvolutional layers to upsample the dimen-

sionality of the intermediate features. At the end of this

process, we get A ∈ R
128 x 128 x δ and find all points with

the maximum likelihood to locate future motion.

7.3. Spatial Refinement Network

The intermediate features hD2 and hD5 of the TPN are

used to learn spatial dependencies between initial predic-

tions Ĥk
A. In the spatial refinement network (SRN), we

first downsample hD5 ∈ R
64 x 64 x 32 to be of size hC17 ∈

R
8 x 8 x 256 using six convolutional layers (C12−C17, max

pooling after C13, C15, and C17) as shown in Figure 12.

Then, the concatenated features hC17 ⊠ hD2 are fed to de-

convolutional layers (D7−D10) with 1 x 1 and 7 x 7 convo-

lutions. In this process, we can successfully capture spatial

dependencies between future locations by using large recep-

tive fields, increasing the number of layers, and conducting

pixel-level correction. Consequently, the network can make

use of rich contextual information between the initial pre-

dictions in a feature space, which results in less confusion



Figure 13: Visual analysis of spatial refinement. The first row shows the predicted future locations from the vanilla trajectory

prediction network as presented in Section 4.1. Heatmap predictions are ambiguous, and hence the trajectory is unrealistic.

The second row shows the refined locations by considering spatial dependencies as in Section 4.2 in the main manuscript.

Figure 14: The proposed approach properly encodes (a) human-human and (b) human-space interactions by inferring rela-

tional behavior from a physical environment (highlighted by a dashed arrow). However, we sometimes fail to predict a future

trajectory when a road user (c) unexpectedly changes the direction of its motion or (d) does not consider the interactions with

an environment. (Color codes: Yellow - given past trajectory, Red - ground-truth, and Green - our prediction)

between heatmap locations.

8. Implementation Details

The network models were trained with a GPU

(NVIDIA’s TITAN Xp) using TensorFlow. We first trained

GRE and TPN with stochastic gradient descent and batch

size of 30, starting with a learning rate of 5e-4. The learn-

ing rate was reduced by a factor of 2 after 100, 150, and 200

epochs. These two networks were trained for 220 epochs,

and its performance is reported as GRE Vanilla in the ta-

bles in the main muscript. Then, we trained the SRN to-

gether with optimizing the rest of the network models using

the total loss Loptimize presented in Section 4.3 in the main

manuscript. The initial learning rate of 2.5e-5 was reduced

by a factor of 2 after 15 epochs, and the network converged

after 20 epochs. The performance of the model is evaluated

in the tables as GRE Refine and GRE MC-L.

9. Additional Evaluation

9.1. Spatial Refinement

The SRN aims to learn spatial dependencies from initial

predictions to enforce the model enforce to generate spa-

tially aligned heatmaps. In addition to Figure 5 in the main

manuscript, we further validate its efficacy in Figure 13.

With an advantage of the intermediate supervision with two

loss functions, the proposed approach shows less confusion

for future locations.

9.2. Qualitative Evaluation

Figure 14 further demonstrates that the proposed ap-

proach generates natural motion for the target with respect

to the consideration of human-human interactions in 14a

and human-space interactions in 14b. We also present pre-

diction failures in 14c where the road user suddenly changes

course and 14d where the road user is aggressive to interac-

tions with an environment.


