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A. Experiment results on BDD100K dataset
In this section, we report extra experimental results,

in which experiments on BDD100K [10] is involved.
BDD100K is a large-scale driving dataset collected from the
United States, under various driving circumstances, weather
conditions, and lighting conditions. It has a training set
with 7000 images, and a validation set with 1000 images.
In our experiment, we used 19 categories of the annota-
tions, which are compatible with the classes of Cityscapes.
Since BDD100K is a new dataset compared to GTA5 and
SYNTHIA in the main text, there are only a few works [2]
that study domain adaptation for semantic segmentation.
Our method achieves state-of-the-art segmentation perfor-
mance. We report IoU for each class and mIoU in Table 1.
Compared to the baseline, our method improves the mIoUs
by 10.9 %.

B. Implementation Details
B.1. TGCF-DA

At first, we pretrain FCN-VGG16 [7] using the labeled
source data. With this pretrained segmentation model fseg ,
we train the augmentation network for Target-Guided and
Cycle-Free Data Augmentation (TGCF-DA). We adapt the
generator and discriminator architectures from MUNIT [5]
and multi-scale discriminators with 3 scales in [9]. We ap-
ply spectral normalization [8] to the weights in discrimina-
tor for training stability. Following an auto-encoder struc-
ture in MUNIT [5], the number of residual blocks in the
generator is set to eight, and four adaptive instance nor-
malization (AdaIN) layers [4] are added to the last four
residual blocks. The source encoder and target encoder
includes three strided convolutional layers to downsample
the source and target images, respectively. Additionally, the
target encoder has two fully connected layers after convo-
lutional layers to produce the learnable AdaIN parameters.
Decoder consists of three transposed convolutional layers.
For the semantic constraint, we fix the weight of semantic
constraint to 10. We run 100k iterations using Adam [6]

with learning rate 1e-4, β1 = 0.5, and β2 = 0.999.

B.2. Self-Ensembling

We train the segmentation network for 200K iterations
using the Adam [6] gradient descent with a learning rate
1e-5 and momentum 0.9. In one batch, we use two labeled
source data, two labeled augmented data, and four unla-
beled target data. DeepLab [1] based on VGG-16 is used as
the base model of the teacher and student network. We use
the prediction maps produced from the ASPP (Atrous Spa-
tial Pyramid Pooling) with four atrous rates (r = 6, 12, 18,
24) to compute the consistency loss. We add two dropout
layers after ‘fc6’ and ‘fc7’ layers.

C. Comparison to other Image-to-Image trans-
lation methods

Figure. 3 shows example images of GTA5 synthesized
in the style of Cityscapes (Target) from CycleGAN, UNIT,
MUNIT, and Ours (TGCF-DA). Figure. 4 shows exam-
ple images of SYNTHIA synthesized in the style of
Cityscapes (Target) from CycleGAN, UNIT, MUNIT, and
Ours (TGCF-DA).

D. Additional experiment results of hyperpa-
rameter sensitivity on TGCF-DA

We present additional experiment results of hyperparam-
eter sensitivity on TGCF-DA. When λseg = 50 in Fig. 5,
generated images are almost replica of the source images.
When λseg is too large, the GAN loss is ignored during
the training process. Thus, the generator fails to learn the
style representations of target images. When λseg = 1 in
Fig. 5, the augmentation network is not able to preserve ob-
jects in image. Also, we can observe the artifacts like road
texture in the sky or tree. As we mentioned in the main
text, we find that the augmentation network fails to maintain
the semantic consistency without the semantic constraint.
Since we apply multiple adaptive instance normalizations
(AdaIN) [4] to the source feature maps like MUNIT [5], the
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Baseline (Source Only) V 71.9 28.9 59.1 6.2 23.5 23.0 25.2 26.4 63.7 24.9 85.3 19.8 14.7 67.9 9.9 12.8 0.0 21.9 15.2 31.6
Strategic curriculum [2] R 87.9 39.8 75.0 15.3 24.6 29.1 0.4 23.1 77.5 24.2 87.0 53.7 9.3 79.6 0.0 36.4 0.0 0.0 29.8 36.7
Ours (TGCF-DA + SE) V 90.2 51.5 81.1 15.0 10.7 37.5 35.2 28.9 84.1 32.7 75.9 62.7 19.9 82.6 22.9 28.3 0.0 23.0 25.4 42.5
Target Only V 90.9 65.9 82.5 44.1 29.9 45.1 41.3 46.2 78.5 47.8 93.5 52.5 29.0 79.8 56.5 21.2 4.4 36.1 0.0 49.7

Table 1. The semantic segmentation results on BDD100K validation set when evaluating the model trained on GTA5. “Source Only”
denotes the evaluation result of models only trained on source data. “Target Only” denotes the segmentation results in supervised settings.
The backbone “R” and “V” stand for ResNet-18 [3] and VGG-16.

augmentation network tends to match the style of the dom-
inant class in the target images with the content of different
classes in the source image. The semantic constraint guides
the augmentation network to learn the semantic contents of
different categories and preserve the semantic consistency.
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Figure 1. Qualitative segmentation results of GTA5 → Cityscapes. From left to right: Original image, ground truth annotation, NoAdapt
baseline, results of our method.

Figure 2. Qualitative segmentation results of SYNTHIA → Cityscapes. From left to right: Original image, ground truth annotation,
NoAdapt baseline, results of our method.
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Figure 3. Example images of GTA5 synthesized in the style of Cityscapes with CycleGAN, UNIT, and MUNIT.

SYNTHIA CycleGAN UNIT MUNIT Ours (TGCF-DA)

Figure 4. Example images of SYNTHIA synthesized in the style of Cityscapes with CycleGAN, UNIT, and MUNIT.
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Figure 5. Hyperparameter sensitivity on TGCF-DA. From left to right: source input, target input, output with λseg = 1, output with λseg =
10, output with λseg = 100.


