
Neural Turtle Graphics for Modeling City Road Layouts
Appendix

Hang Chu1,2,4 Daiqing Li4 David Acuna1,2,4 Amlan Kar1,2,4 Maria Shugrina1,2,4 Xinkai Wei1,4

Ming-Yu Liu4 Antonio Torralba3 Sanja Fidler1,2,4
1University of Toronto 2Vector Institute 3MIT 4NVIDIA

{chuhang1122,davidj,amlan}@cs.toronto.edu, {daiqingl,mshugrina,xinkaiw,mingyul,sfidler}@nvidia.com, torralba@mit.edu

Figure 1: Top-1 error (left) and Top-5 error (right) on the Quick-
Draw [3] dataset, lower is better.

1. Learning Complex Shapes with Multi-Paths

To further investigate extracting complex shape represen-
tations using multiple paths similar to NTG, we take the
QuickDraw [3] dataset. It contains 2.6 million sketch draw-
ings of a wide range of 345 categories. We train models to
extract features representing the sketch shape, which is then
used recognizing the sketch’s category.

We compare the following three methods:
• SketchRNN [3]: A sketch is treated as a single sequence
and encoded with an RNN, which takes the relative motion
as well as up-hold-down status of the pen as its inputs. We
keep SketchRNN’s encoder, and add a linear layer on top of
the final representation for classification.
• ResNet [4]: We directly render the sketch on a 2D canvas
and use an 18-layer CNN to form the representation vector,
which is used to predict the category of the sketch.
• NTG: We treat the sketch as multiple paths, where each
path represents a single stroke of pen being held down and
drawing. Samilar to NTG, we use the sequence of relative
motions between two nodes as input to the encoder. We com-
pare the default unordered NTG (NTG-U), and an ordered
version of NTG (NTG-O) where the hidden vector of each
path is passed to another RNN according to their order in
the drawing instead of direct summation in NTG-U.

For each method, we vary the dimension of the final rep-
resentation vector from 50 to 200, and proportionally for
the number of model weights where 200 corresponds to
the full capacity. The result is shown in Fig. 1. It can be
seen that NTG-U is able to achieve comparable accuracy,
indicating that an effective representation of complex shape

aircraft carrier squiggle pond frog squirrel

yoga bracelet bridge dog camouflage

elephant scorpion rhinoceros raccoon car

lollipop chair rain strawberry cookie

Figure 2: Examples of categories and their accuracies in the
QuickDraw [3] dataset. First and second row show categories where
NTG-O achieves better accuracy, third row and fourth row show
categories where ResNet and SketchRNN achieve better accuracy,
respectively. Although ResNet achieves good result, it uses 87%
more number of weights than NTG. It can be seen that the multi-
path NTG is particularly better at recognizing complex shapes such
as aircraft carrier, camouflouge, and yoga.

can be learned in an unordered manner from multiple paths
of drawing motions. Stroke order seems arbitrary across

1



mp1 mp2 pa fc

NTG-Enhance 0.15 1.34 0.28 67.6
+ neighbours 0.29 2.44 0.53 85.6
- max-density 0.48 3.95 0.57 84.7
- max-degree 0.20 1.68 0.44 98.5
- planarity 0.95 7.29 0.70 75.7
- min-angle 0.23 1.93 0.47 79.4

Table 1: Ablation study on city generation perceptual FIDs.

different drawers. However, in a large scale dataset such
as QuickDraw [3] order patterns emerge and become im-
portant to the success of this task, because the order is no
longer unique and is shared by multiple drawers. Therefore,
SketchRNN performs better than NTG-U as it is able to
make use of stroke order. NTG-O achieves the best perfor-
mance, because it not only learns path-wise features, but also
makes use of stroke order information. It should be noted
that ResNet18 has more than a magnitude more weights
compared to SketchRNN and NTG. This shows the advan-
tage of directly modeling the drawing motions, compared
to learning from an image rendering. Fig. 2 shows qualita-
tive examples. It can be seen that SketchRNN and ResNet
are more effective in recognizing simple and regular shapes,
while the multi-path NTG is better at recognizing complex
classes, such as yoga, camouflage, and aircraft carrier.

2. City Road Layout Generation Details
We provide further details of our implementation in the

first task of city road layout generation. In Fig. 3 and Fig. 4,
we continue the Fig.3 of the main paper and provide more
qualitative results.
• GraphRNN-2D [7, 2]: We combine the ideas from both
GraphRNN [7] and RoadTracer [2]. Similar to GraphRNN,
we generate new nodes in a BFS order, and use another
RNN to determine edges connecting the new node to its 40
predecessors. Similar to RoadTracer [2], we render the local
existing graph centered at the previous generated node and
feed it as input when we predict the new node position. We
further compute another mask that indicates bad positions
which will cause invalid edge crossing to avoid placing the
new node at these positions.
• NTG: At inference time, we find the maximum node de-
gree and density plus the minimum angle between two edges
that exist in the training set, and make sure NTG’s gener-
ation does not exceed these limits. We enforce planarity
by adding nodes when two edges intersect. In Tab. 1 we
show ablation study of removing these constraints. We no-
tice the max-density and max-degree constraints are useful
in preventing over-generation. We also experiment adding
neighbour nodes that are not connected by an immediate
edge as context. This does not lead to improved performance

2 3 5 10 20 30
IOU 19.66 24.68 30.83 37.91 45.49 48.29
F1 32.86 39.59 47.12 54.98 62.53 65.13

APLS 45.77 43.97 44.16 42.68 43.99 42.94
Table 2: Effect of number of starting points in RoadTracer [2].

as shown in Tab. 1. We conjecture this is due to the curricu-
lum difference at inference time, where the neighbours grow
in a directional manner.

In NTG training, we sample incoming paths that have
similar second last node in each iteration. This leads to
better performance because it simulates the generation cir-
cumstance where active node often have one existing neigh-
bour. Edges that have been produced by proximity check
instead of being produced together with a decoded node,
are not included in incoming paths of future steps. This is
because their relative motion can be slightly different from
the decoder’s output, which causes covariance shift under
the discrete coordinate setting.

3. Satellite Road Parsing Details
We provide further details of our implementation in the

second task of satellite road parsing.
• DeepRoadMapper [6]: We use the open-source imple-
mentation provided by the authors of RoadTracer [2].
• RoadTracer [2]: We use the official implementation pro-
vided by the authors. We notice starting points are im-
portant for the performance of RoadTracer. Note that all
starting points are selected from ground truth in our ex-
periment, which gives RoadTracer additional information.
Tab. 2 shows our experiment on the effect of starting points.
It can be seen that both IOU and F1 increase as starting
points increase, indicating more roads are detected pixel-
wise. However, APLS decreases as starting points increase.
This is because with more starting points, RoadTracer often
produces more isolated sets of roads and fails to link them
together. This leads to more invalid (infinite length) Dijkstra
paths, thus causing lower APLS.
• NTG: In the parsing mode NTG-P, we discretize the de-
coder’s polar coordinate output at a resolution of 10 degrees.
Once an edge is generated, we compute its precise fine angle
by applying threshold and thinning of the image probabil-
ity within the range of the 10 degrees. In NTG-I, we start
with the graph produced by threshold and thinning, and push
nodes with one existing edge to the queue to start the NTG
process.

4. Dataset, Code, and Video
Our data and code are available at https://

nv-tlabs.github.io/NTG. We thank ESRI for let-
ting us use the CityEngine software in demonstration video.

https://nv-tlabs.github.io/NTG
https://nv-tlabs.github.io/NTG


GraphRNN-2D [7, 2] PGGAN [5] CityEngine [1] NTG GT

A
ac

he
n

B
ar

ce
lo

na
B

er
ke

le
y

B
er

lin
B

ud
ap

es
t

C
am

br
id

ge

Figure 3: Main paper Fig.3 continued. More qualitative examples of city road layout generation.



GraphRNN-2D [7, 2] PGGAN [5] CityEngine [1] NTG GT

L
on

do
n

Pa
ri

s
Pr

ag
Sa

nF
ra

nc
is

co
To

ky
o

To
ro

nt
o

Figure 4: Main paper Fig.3 continued. More qualitative examples of city road layout generation.



References
[1] Esri: Cityengine. https://www.esri.com/en-us/

arcgis/products/esri-cityengine. 3, 4
[2] Favyen Bastani, Songtao He, Sofiane Abbar, Mohammad Al-

izadeh, Hari Balakrishnan, Sanjay Chawla, Sam Madden, and
David DeWitt. Roadtracer: Automatic extraction of road net-
works from aerial images. In CVPR, 2018. 2, 3, 4

[3] David Ha and Douglas Eck. A neural representation of sketch
drawings. arXiv:1704.03477, 2017. 1, 2

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
1

[5] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. In ICLR, 2018. 3, 4

[6] Gellért Máttyus, Wenjie Luo, and Raquel Urtasun. Deep-
roadmapper: Extracting road topology from aerial images. In
ICCV, 2017. 2

[7] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and
Jure Leskovec. Graphrnn: Generating realistic graphs with
deep auto-regressive models. In ICML, 2018. 2, 3, 4

https://www.esri.com/en-us/arcgis/products/esri-cityengine
https://www.esri.com/en-us/arcgis/products/esri-cityengine

