
A. Projection onto the intersection of the l0-ball
and the σ-map constraints

We here present the projection step which is used for the
σ-PGD attack, where we allow perturbations on at most k
pixels and respecting the σ-map constraints which are de-
fined in (4) and (5).

A.1. Color images

Given a color image x ∈ [0, 1]d×3, we want to project a
given point y ∈ Rd×3 onto the set

C(x) =
{
z ∈Rd×3

∣∣ d∑
i=1

max
j=1,...,3

1|zij−xij |>0 ≤ k,

(1− κσij)xij ≤ zij ≤ (1 + κσij)xij ,

0 ≤ zij ≤ 1
}
,

where d is the number of pixels, σij are the pixelwise,
channel-specific bounds defined in Section 2 and κ > 0
a given parameter. We can write the projection problem as

min
λ∈Rd

d∑
i=1

3∑
j=1

(yij − (1 + λiσij)xij)
2

s. th. − κ ≤ λi ≤ κ, i = 1, . . . , d

0 ≤ (1 + λiσij)xij ≤ 1, i = 1, . . . , d, j = 1, . . . , 3

d∑
i=1

1|λi|>0 ≤ k

Ignoring the combinatorial constraint, we first solve for
each pixel the problem

min
λi∈R

3∑
j=1

(yij − (1 + λiσij)xij)
2

s. th. − κ ≤ λi ≤ κ
0 ≤ (1 + λiσij)xij ≤ 1, j = 1, . . . , 3

We first note that the last constraint is always fulfilled if
xij = 0 or σij = 0. In the other case we can rewrite the
constraint as

− 1

σij
≤ λi ≤

1

σij

(1

xij
− 1
)
, j = 1, . . . , 3.

Combining all constraints yields

λ
(l)
i :=max

{
− κ, max

j

xij 6=0,σij 6=0

− 1

σij

}
≤ λi

≤ min
{
κ, min

j

xij 6=0,σij 6=0

1

σij

(1

xij
− 1
)}

:= λ
(u)
i .

The unconstrained solution is given by

λ′i =

∑3
j=1 σijxij(yij − xij)∑3

j=1 σ
2
ijx

2
ij

.

Thus the optimal solution for each pixel i is given by

λ∗i = max{λ(l)i ,min{λ′i, λ
(u)
i }}.

The final solution of the original problem allows only to
choose k pixels to be changed. For each pixel i the quantity

φi :=

3∑
j=1

(yij − xij)2 −
3∑
j=1

(yij − (1 + λ∗i σij)xij)
2

represents the difference in how much the objective in-
creases between the cases λi = 0 (that is yi is projected
to xi) and λi = λ∗i . Since we want to minimize the ob-
jective function, the optimal solution is obtained by sorting
(φi)

d
i=1 in decreasing order π and setting

λ(final)πi
=

{
λ∗πi

if i = 1, . . . , k,

0 else .
.

Finally, the point belonging to C(x) onto which y is pro-
jected is z ∈ Rd×3 defined componentwise by

zij = (1 + λ
(final)
i σij)xij , i = 1, . . . , d, j = 1, . . . , 3.

A.2. Gray-scale images

Since gray-scale images have only one color channel
and, to get imperceivable manipulations, we use additive
modifications as defined in (5), we project onto the set,
given the original image x,

C(x) =
{
z ∈ Rd

∣∣ d∑
i=1

1|zi−xi|>0 ≤ k,

xi − κσi ≤ zi ≤ xi + κσi,

0 ≤ zi ≤ 1
}
.

Defining

li := max{xi − κσi, 0}, ui := min{xi + κσi, 1},

we can see that in this case the problem is equivalent to
the projection onto the intersection of an l0-ball and box
constraints and then solved as illustrated in Section 4.1.

B. Experiments
We here report the details about the attacks, the attacked

models and the parameters used in Section 5. The test accu-
racy (validation accuracy for Restricted ImageNet) of every
model introduced in the paper is reported in Table 1.

test accuracy of the attacked models

section dataset model accuracy

Section 5.1
MNIST NiN [2] 99.66%
CIFAR-10 NiN [2] 90.62%
R-ImageNet ResNet-50 [6] 94.46%

Sections
5.2, 5.3, B.2

MNIST

plain [3] 99.17%
l∞-at [3] 98.53%
l2-at 98.95%
l0-at 96.38%
l0 + σ-at 99.29%

CIFAR-10

plain 88.38%
l∞-at 79.90%
l2-at 80.44%
l0-at 82.31%
l0 + σ-at 76.24%

R-ImageNet ResNet-50 [6] 94.46%

Table 1: Accuracy of the attacked models. We here re-
port the accuracy on the test (validation set for Restricted
ImageNet) set of the models introduced in Section 5.

B.1. Evaluation of l0-attacks

The architecture used for this experiment is the Net-
work in Network from [2], which we trained accord-
ing to the code available at https://github.com/
BIGBALLON/cifar-10-cnn, adapting it also to the
case of MNIST (which has different input dimension).
We run PGD0 with ten thresholds k (that is the maxi-
mum number of pixels that can be modified), which are
k ∈ {2, 3, 4, 5, 6, 8, 10, 12, 15, 20} for MNIST and k ∈
{1, 2, 3, 4, 6, 8, 10, 12, 15, 20} for CIFAR-10.

Running times We report the average running times for
one image for the experiments in Section 5.1 (the times
for SparseFool are those given by our reimplementation,
which uses DeepFool as implemented in [5]). MNIST:
LocSearchAdv 0.6s (from [4]), PA 21s, CW 300s, Sparse-
Fool 2.5s, CornerSearch 9.8s, PGD0 0.06s (one thresh-
old). CIFAR-10: LocSearchAdv 0.7s [4], PA 22s, CW
283s, SparseFool 1.0s, CornerSearch 3.6s, PGD0 0.19s (one
threshold). ImageNet: SparseFool 17s, CornerSearch 953s,
PGD0 13s (one threshold).

Stability of CornerSearch Since Algorithm 1 involves a
component of random sampling, we want to analyse here
how the performance of CornerSearch depends on it. Then,
we run CornerSearch for 10 times on the models used in Ta-
ble 1 of Section 5 and get the following statistics: MNIST,
success rate (%) 97.37 ± 0.13, mean 9.12 ± 0.05, median
7 ± 0. CIFAR-10, success rate (%) 99.33 ± 0.12, mean
2.71 ± 0.02, median 2 ± 0. This means that our attack is

Figure 1: Left: original. Right: l0-adversarial example with
clearly visible changes along axis-aligned edges.

stable across different runs.

B.2. Sparse and Imperceivable manipulations

In Figure 1 we show an example of how changes along
axis-aligned edges are evident and easy to detect, even if the
color is similar to that of some of the neighboring pixels.
This provides a further justification of the heuristic we use
to decide where the images can be perturbed in an invisible
way.

In Figures 2, 3 and 4 we illustrate how the l0 + σ-map
attack produces sparse and imperceivable adversarial per-
turbations, while both the l0- and the l0 + l∞-attack either
introduce colors which are non-homogeneous with those of
the neighbors or modify pixels in an uniform background,
which makes them easily visible.

MNIST In Figure 2 we show the differences among the
adversarial examples found by our attacks CornerSearch
(l0-attack), l0+ l∞-attack and σ-CornerSearch. We see that
our l0 + σ-map attack does not modify pixels in the back-
ground, far from the digit or in areas of uniform color in the
interior of the digit itself.
Moreover, while, in the example shown in the lower left
quadrant of Figure 2, the original image is correctly classi-
fied as a “4”, we notice that the adversarial example found
by l0 + l∞-attack shows features of a new class. The mod-
ified pixels bridge the gap between the vertical segments
in the upper part of the digit, making it similar to a “9”.
This means that this image does not clearly belong to any
class and thus cannot be considered as an obvious adversar-
ial sample. Conversely, the l0 + σ-attack does not change
the shape of the digit, which can still be clearly recognized
as belonging to the original class “4”.
The attacked model is the plain model from Section 5.3
(more details on the architecture below). For the l0 + l∞-
attack we use a bound on the l∞-norm of the perturbation
of δ = 0.2.

CIFAR-10 We show in Figure 3 more examples built as
those in Figure 3 of Section 5. The attacked model is the
plain classifier from Section 5.3 (more details on the archi-
tecture below). For the l0 + l∞-attack we use a bound on

https://github.com/BIGBALLON/cifar-10-cnn
https://github.com/BIGBALLON/cifar-10-cnn

the l∞-norm of the perturbation of δ = 0.1.

Retricted ImageNet We show in Figure 4 more exam-
ples created as those in Figure 4 of Section 5. The attacked
model is the ResNet-50 from [6] (both weights and code
are available at https://github.com/MadryLab/
robust-features-code) already introduced in Sec-
tion 5.1. For the l0 + l∞-attack we use δ = 0.05 as bound
on the l∞-norm of the perturbation.

B.3. Adversarial training

MNIST The architecture used is the same as in [3] (avail-
able at https://github.com/MadryLab/mnist_
challenge), consisting of 2 convolutional layers, each
followed by a max-pooling operation, and 2 dense layers.
We trained our classifiers for 100 epochs with Adam [1].
The plain and l∞-at models are those provided by
[3] at https://github.com/MadryLab/mnist_
challenge, while we trained l2-at using the plain gra-
dient as direction of the update for PGD, in contrast to the
sign of the gradient which is used for adversarial training
wrt the l∞-norm.
For adversarial training wrt l0-norm we use k = 20 (maxi-
mal number of pixels to be changed), 40 iterations and step
size η = 30000/255. For l0 + σ-at we set k = 100, κ = 0.9
(for the bounds given by the σ-map), 40 iterations of gradi-
ent descent with step size η = 30000/255.

CIFAR-10 We use a CNN with 8 convolutional layers,
consisting of 96, 96, 192, 192, 192, 192, 192 and 384 fea-
ture maps respectively, and 2 dense layers of 1200 and 10
units. ReLU activation function is applied on the output of
each layer, apart from the last one. We perform the train-
ing with data augmentation (in particular, random crops
and random mirroring are applied) for 100 epochs and with
Adam optimizer [1].
For adversarial training wrt l0-norm we use k = 20 (num-
ber of pixels to be changed), 10 iterations of PGD with step
size η = 30000/255. For l0 + σ-at, we use k = 120, κ = 0.6,
10 iterations of PGD with step size η = 30000/255.

C. Adversarial examples of σ-PGD
We want here to compare the adversarial examples gen-

erated by our two methods, σ-CornerSearch and σ-PGD. In
Figures 5 and 6 we show the perturbed images crafted by
the two attacks, as well as the original images and the mod-
ifications rescaled so that each component is in [0,1] and the
largest one equals 1. Moreover, for σ-PGD we report the re-
sults obtained with a smaller κ. The gray images indicate
unsuccessful cases.
It is clear that σ-CornerSearch produces sparser perturba-
tions. Moreover, σ-PGD with the same κ used for σ-CS

gives more visible manipulations. We think that this is due
to two reasons: first, the whole budget of k pixels to mod-
ify is always used by σ-PGD, while this does not happen
with σ-CS, and second, σ-PGD aims at maximizing the
loss inside the space of the allowed perturbations. This is
possibly achieved by modifying neighboring pixels, which
sometimes have slightly different colors, in opposite direc-
tions (that is with λi with different signs for different i).
Conversely, σ-CornerSearch does not consider spatial rela-
tions among pixels, and thus it does not show this behaviour.
However, as showed in the Figures, it is possible to recover
less visible changes also for σ-PGD by decreasing κ, at the
cost of a smaller success rate.

D. Propagation of sparse perturbations
To visualize the effect of very sparse perturbations on

the decision made by the classifier we can check how the
output of each hidden layer is modified when an adversarial
example is given as input of the network instead of the orig-
inal image. We here consider the plain model used in the
comparison of the different adversarial training schemes on
CIFAR-10 in Section 5 and the adversarial examples gener-
ated by CornerSearch on it.
We perform a forward pass first with the original images
as input and then with the adversarially manipulated ones.
In Figure 7 we plot (each color represents an image of the
test set) the difference between the output values, after the
activation function, of each unit of the network obtained
with the two forward passes. The vertical segments sepa-
rate the layers, and the leftmost section shows the differ-
ence of the inputs. The horizontal lines represent no dif-
ference in the values between the two forward passes. We
can see how, going deeper into the network (towards right
in Figure 7), the sparsity of the modifications decreases (the
perturbed components of the input are on average 0.21%,
those of the last hidden layer 19.45%) while their magni-
tude becomes larger, so that changing even only one pixel
(that is three entries of the original image) causes a wrong
classification.

References
[1] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. preprint, arXiv:1412.6980, 2014. 3
[2] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-

work. In ICLR, 2014. 2
[3] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,

Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In ICLR, 2018. 2, 3

[4] Nina Narodytska and Shiva Prasad Kasiviswanathan. Sim-
ple black-box adversarial perturbations for deep networks. In
CVPR 2017 Workshops, 2016. 2

[5] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Fool-
box: A python toolbox to benchmark the robustness of ma-
chine learning models. In ICML Reliable Machine Learning
in the Wild Workshop, 2017. 2

https://github.com/MadryLab/robust-features-code
https://github.com/MadryLab/robust-features-code
https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/mnist_challenge

original l_0 zoom sparsity:0.64% original l_0 zoom sparsity:0.38%

l_0 + l_inf zoom sparsity:4.2% l_0 + l_inf zoom sparsity:1.9%

<-map l_0 + <-map zoom sparsity:5.4% <-map l_0 + <-map zoom sparsity:2.4%

original l_0 zoom sparsity:0.38% original l_0 zoom sparsity:0.77%

l_0 + l_inf zoom sparsity:3.6% l_0 + l_inf zoom sparsity:4.1%

<-map l_0 + <-map zoom sparsity:5.5% <-map l_0 + <-map zoom sparsity:4.7%

Figure 2: Different attacks on MNIST. We illustrate the differences of the adversarial examples (second column) found by
CornerSearch (l0), l0 + l∞- and σ-CornerSearch, respectively first, second and third row. The third column shows the zoom
of the area highlighted by the red box while the fourth column contains the map of the modified pixels (sparsity column).
The original image can be found top left and the visualization of the σ-map (rescaled so that maxi σi = 1) bottom left.

[6] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness may
be at odds with accuracy. In ICLR, 2019. 2, 3

original l_0 perturbation sparsity:0.29% original l_0 perturbation sparsity:0.2%

l_0 + l_inf perturbation sparsity:1.7% l_0 + l_inf perturbation sparsity:2.3%

<-map l_0 + <-map perturbation sparsity:7.1% <-map l_0 + <-map perturbation sparsity:6.6%

original l_0 perturbation sparsity:0.2% original l_0 perturbation sparsity:0.2%

l_0 + l_inf perturbation sparsity:3% l_0 + l_inf perturbation sparsity:0.98%

<-map l_0 + <-map perturbation sparsity:9.6% <-map l_0 + <-map perturbation sparsity:6.4%

Figure 3: Different attacks on CIFAR-10. We illustrate the differences of the adversarial examples (second column) found
by CornerSearch (l0), l0 + l∞-attack and σ-CornerSearch, respectively first, second and third row. The third column shows
the adversarial perturbations rescaled to [0, 1], the fourth the map of the modified pixels (sparsity column). The original
image can be found top left and the RGB representation of the σ-map, rescaled so that maxi,j σij = 1, bottom left.

original l_0 zoom sparsity:0.2% original l_0 zoom sparsity:0.05%

l_0 + l_inf zoom sparsity:7.4% l_0 + l_inf zoom sparsity:3.2%

<-map l_0 + <-map zoom sparsity:6.5% <-map l_0 + <-map zoom sparsity:2.7%

original l_0 zoom sparsity:0.03% original l_0 zoom sparsity:0.11%

l_0 + l_inf zoom sparsity:5.7% l_0 + l_inf zoom sparsity:4.1%

<-map l_0 + <-map zoom sparsity:3.5% <-map l_0 + <-map zoom sparsity:3.5%

Figure 4: Different attacks on Restricted ImageNet. We illustrate the differences of the adversarial examples (second
column, zoom in third column) found by CornerSearch (l0), l0 + l∞-attack and σ-CornerSearch, respectively first, second
and third row. The fourth column shows the map of the modified pixels (sparsity column). The original image is in the top
left and the RGB representation of the σ-map, rescaled so that maxi,j σij = 1, bottom left.

original σ-CornerSearch, κ = 0.8 σ-PGD, κ = 0.8 σ-PGD, κ = 0.6

Figure 5: Comparison σ-CornerSearch and σ-PGD on MNIST. We show the adversarial examples generated by σ-
CornerSearch with κ = 0.8, σ-PGD with κ = 0.8 and σ-PGD with κ = 0.6, together with the respective perturbations
rescaled to [0,1]. The sparsity level used for σ-PGD is k = 50.

original σ-CornerSearch, κ = 0.4 σ-PGD, κ = 0.4 σ-PGD, κ = 0.25

Figure 6: Comparison σ-CornerSearch and σ-PGD on CIFAR-10. We show adversarial examples generated by σ-
CornerSearch with κ = 0.4, σ-PGD with κ = 0.4 and σ-PGD with κ = 0.25, together with the respective perturbations
rescaled to [0,1]. The sparsity level used is k = 100. The gray images means the method could not find an adversarial
manipulation.

Figure 7: Propagation of perturbations. Difference in the values of each unit of the network obtained when propagating
images of the test set and adversarial examples associated to them. The vertical segments distinguish the units of different
layers, so that the input space is shown on left and the output on the right. Each color represents an image.

