
Supplementary Material:
Cluster Alignment with a Teacher for Unsupervised Domain Adaptation

Zhijie Deng, Yucen Luo, Jun Zhu∗

Dept. of Comp. Sci. & Tech., Institute for AI, BNRist Lab, THBI Lab, Tsinghua University
{dzj17, luoyc15}@mails.tsinghua.edu.cn, dcszj@tsinghua.edu.cn

A. Class-conditional cluster structure on more
tasks

First, we visualize the learned feature spaces of CAT,
RevGrad [7] and MSTN [49] on the imbalanced SVHN to
MNIST task using t-SNE [27], as shown in Fig.1. It is ob-
vious that CAT can force the samples from the same class
to concentrate together to form tighter clusters than those of
RevGrad and MSTN, and the clusters present strip pattern
in the 2-D space. CAT can also align the class-conditional
distributions of the source and the target domains correctly.
However, RevGrad and MSTN tend to align the ‘0’ images
in SVHN with the ‘1’ images in MNIST, thus the learned
feature spaces of them are confusing and not discriminative.
This visualization verifies the results in Table. 1.

Second, we plot the feature spaces learned by
CAT+rRevGrad and RevGrad on MNIST to USPS and
USPS to MNIST tasks in Fig. 2 using t-SNE [27].
CAT+rRevGrad can deliver more discriminative feature
spaces with separable and tight class-conditional clusters.
Therefore, it is sufficient to use the first-order statistics
based matching loss La to match the class-conditional dis-
tributions of the two domains. The aligned clusters of the
source and the target domains also verify the effectiveness
of the loss La.

Furthermore, we examine the feature space learned by
CAT on more challenging tasks in Office-31 dataset and
ImageCLEF-DA dataset, and results are demonstrated in
Fig. 3. These features are outputs of AlexNet trained
with rRevGrad+CAT. The class-conditional distributions
are shaped to be tight and separable clusters, and the cor-
responding cluters from the source domain and the target
domain are aligned. Therefore, CAT can achieve the objec-
tives of discriminative learning and class-conditional align-
ment, thus can perform well on the extensive experiments
on Office-31 and ImageCLEF-DA datasets.
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Figure 1: (Best viewed in color.) Feature space learned on
imbalanced SVHN to MNIST task. Green, red, blue and
orange points represent ‘0’ images from SVHN, ‘1’ images
from SVHN, ‘0’ images from MNIST and ‘1’ images from
MNIST, respectively.

B. Quantitative estimate of the divergence be-
tween domains

When aligning the source domain and target domain via
the combination of RevGrad and CAT, the loss Ld which is
maximized w.r.t. the critic c can be viewed as a lower bound
of 2JSD(s, t)−2 log 2 (see [9] for the details) where JSD
denotes the Jensen-Shannon divergence between distribu-
tions. Therefore, we plot 1

2Ld + log 2 to quantitatively es-
timate the divergence between the two domains, following
[49]. The results are shown in Fig. 4 and we use the AlexNet
as the classifier here. CAT can boost RevGrad significantly,
leading to faster and better convergence. This group of
experiments verifies that when combining CAT with the
marginal distribution alignment approaches, it can provide a



(a) RevGrad (b) rRevGrad+CAT

(c) RevGrad (d) rRevGrad+CAT

Figure 2: (Best viewed in color.) Feature space learned on
MNIST to USPS (Fig. 2a and Fig. 2b) and USPS to MNIST
(Fig. 2c and Fig. 2d) tasks. Blue violet denotes the source
domain and the other colors denote different classes of tar-
get domain.
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Figure 3: (Best viewed in color.) Feature space learned on
four challenging tasks. Blue violet (in (a) and (b)) and deep
sky blue (in (c) and (d)) denote the source domain and the
other colors denote different classes of target domain.

discriminative class-conditional alignment and bias the ex-
isting approaches to align the cluster-structure marginal dis-
tributions better.
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Figure 4: Jensen-Shannon divergence (JSD) curves during
training.
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Figure 5: (Best viewed in color.) Feature space in the early
stages of training. Different from the above feature spaces,
blue violet (in (a) and (b)) and deep sky blue (in (c)) de-
note the target domain and the other colors denote different
classes of source domain.

C. Verification of confidence-thresholding
technique

Since the source classification loss and the source dis-
criminative clustering loss can produce strong gradients and
converge quickly, the discriminative cluster structure will
form in the source domain in the early stages of training.
However, the classifier has not been adapted for the target
domain, so a notable part of the target features will lie in
the gaps between the source clusters and have low clas-
sification confidence. Therefore, the marginal alignment
approaches may easily map these features into incorrect
clusters, as stated in Sec. 3.2.3. To address this problem,
we propose the confidence-thresholding technique which
includes the fine-level structure information into marginal
alignment approaches. We claim that in the training pro-
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Figure 6: The selection rate of the confidence-thresholding
technique on different tasks.

cedure, the discriminative class-conditional alignment be-
tween the two domains forms gradually, so more and more
samples are going to be selected into the marginal align-
ment training. Here we prove these through experiments on
tasks in SVHN-MNIST-USPS, Office-31 and ImageCLEF-
DA. At first, we train the RevGrad+CAT models on the three
tasks with limited iterations (i.e., 2000 iterations on SVHN
to MNIST task, 100 iterations on Amazon to DSLR task and
100 iterations on p to i task) and plot the feature spaces of
them in Fig 5. Obviously, a notable part of target samples
lie in the gaps between the source clusters, especially on the
SVHN to MNIST task which has large source and target do-
mains. Then, we train the rRevGrad+CAT models on these
tasks following the same settings, and we plot the selec-
tion rate of the confidence-thresholding technique w.r.t. the
number of iterations in Fig. 6. When using this technique,
we note that the selection rate monotonically increases with
the number of iterations and after several thousands of itera-
tions, the selection rate will be almost 100% on the Amazon
to DSLR and p to i tasks. On SVHN to MNIST task, we use
a ramp-up function exp(−10 ∗ (1−min( ite−5000

10000 , 1.))) as
α after 5000 iterations, suggested by related SSL works.
Therefore, after around 15000 iterations, the discriminative
clustering structure forms, and then the samples are pushed
far away from the decision boundaries. So almost all the
samples will have confidence more than p and will be se-
lected into the domain adversarial training.

D. Convergence

To inspect how CAT converges, we plot the test accu-
racy with respect to the number of iterations in Fig. 7. On
the two adaptation tasks using AlexNet, CAT shows similar
convergence rate with RevGrad [7] but better performance.
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Figure 7: Test accuracy curves.

E. Experimental details
On digits adaptation tasks, we use the simple LeNet with

Batch Normalization after the convolutional layers and use
the probability logits as features for adaptation, following
[49, 44]. When combining with RevGrad [7] and rRevGrad,
the critic model has a 10→ 500→ 500→ 1 architecture.

On more challenging tasks, we conduct experiments
based on the AlexNet [15] and ResNet-50 [12] equipped
with 256-D bottleneck layers after the fc7 and pool5 layers
respectively (following [24, 49]). We use the features out-
putted by the bottleneck layers as image representations for
adaptation and use a three-layer critic with 256→ 1024→
1024 → 1 architecture. We finetune all the layers before
the bottleneck layers in AlexNet and ResNet-50 and train
the bottleneck layers and the classification layers via back
propagation.

We use the stochastic gradient descent with 0.9 momen-
tum with an annealed learning rate µp = 0.01

(1+10p)0.75 where
p changes from 0 to 1 in the training progress [7, 49] when
using LeNet and AlexNet as the classifiers. The learning
rate for finetuned layers is set to be the ten percent of that
for layers trained from scratch. We use batches with 128
elements in experiments using LeNet, batches with 200 el-
ements in experiments using AlexNet and batches with 36
elements in experiments using ResNet-50.

We use the same architectures and optimization settings
(e.g., batch size, learning rate, optimizer and weight decay)
as those of the original methods [41, 37] when combining
CAT with them.

The pseudo labels are not initialized randomly. Specifi-
cally, in the first 5000 iterations, we pre-train CAT by set-
ting α = 0. During this, the classifier is trained to fit source
data but won’t overfit, thus its implicit ensemble can per-
form well on some target samples and provide a reliable
initial set of pseudo labels. Then, we ramp-up to activate
the clustering and alignment losses to impose conditional
alignment.


