
HAWQ: Hessian AWare Quantization of Neural Networks with Mixed-Precision

Zhen Dong∗, Zhewei Yao∗, Amir Gholami∗, Michael W. Mahoney, Kurt Keutzer
University of California, Berkeley

{zhendong, zheweiy, amirgh, mahoneymw, and keutzer}@berkeley.edu

Abstract

Model size and inference speed/power have become a
major challenge in the deployment of neural networks for
many applications. A promising approach to address these
problems is quantization. However, uniformly quantizing
a model to ultra low precision leads to significant accu-
racy degradation. A novel solution for this is to use mixed-
precision quantization, as some parts of the network may
allow lower precision as compared to other layers. How-
ever, there is no systematic way to determine the precision
of different layers. A brute force approach is not feasible
for deep networks, as the search space for mixed-precision
is exponential in the number of layers. Another challenge
is a similar factorial complexity for determining block-wise
fine-tuning order when quantizing the model to a target pre-
cision. Here, we introduce Hessian AWare Quantization
(HAWQ), a novel second-order quantization method to ad-
dress these problems. HAWQ allows for the automatic se-
lection of the relative quantization precision of each layer,
based on the layer’s Hessian spectrum. Moreover, HAWQ
provides a deterministic fine-tuning order for quantizing
layers. We show the results of our method on Cifar-10 using
ResNet20, and on ImageNet using Inception-V3, ResNet50
and SqueezeNext models. Comparing HAWQ with state-of-
the-art shows that we can achieve similar/better accuracy
with 8× activation compression ratio on ResNet20, as com-
pared to DNAS [39], and up to 1% higher accuracy with
up to 14% smaller models on ResNet50 and Inception-V3,
compared to recently proposed methods of RVQuant [27]
and HAQ [38]. Furthermore, we show that we can quantize
SqueezeNext to just 1MB model size while achieving above
68% top1 accuracy on ImageNet.

1. Introduction

There has been a significant increase in the computa-
tional resources required for Neural Network (NN) train-
ing and inference. This is mainly due to larger input sizes

∗Equal contribution.

(e.g., higher image resolution) as well as larger NN mod-
els requiring more FLOPs and significantly larger memory
footprint. For example, in 1998 the state-of-the-art NN was
LeNet-5 [19] applied to MNIST dataset with an input image
size of 1 × 28 × 28. Twenty years later, a common bench-
mark dataset is ImageNet, with an input resolution that is
200× larger than MNIST, and with NN models that have
orders of magnitude higher memory footprint.

In fact, ImageNet resolution is now considered “small”
for many applications such as autonomous driving where
input resolutions are significantly larger (more than 40× in
certain cases).

This combination of larger models and higher resolution
images has created a major challenge in the deployment of
NNs in application environments with computationally con-
strained resources such as surveillance systems or ADAS
systems in passenger cars. This trend is going to accelerate
further in the near future.

There has been a significant effort taken by many re-
searchers to address these issues. These could be broadly
categorized as follows. (i) Finding NNs that provide the re-
quired accuracy, while remaining compact by design (i.e.,
with small memory footprint) and requiring relatively small
FLOPs. SqueezeNet [15] was an early effort here, followed
by more efficient NNs such as [32, 22]. (ii) Co-designing
NN architecture and hardware together. This can allow sig-
nificant speed-ups as well as savings in power consumption
of the hardware without losing accuracy. SqueezeNext [7]
is an example work here where the neural network and asso-
ciated accelerator are co-designed. (iii) Pruning redundant
filters of NN layers. Seminal works here are [9, 26, 21, 23].
(iv) Using quantization (reduced precision) instead of float
or double precision, which can significantly speed up in-
ference time and reduce power consumption. (v) Apply-
ing AutoML for both hardware aware NN design as well
as quantization. Notable works here are DNAS [39] and
HAQ [38]. This paper exclusively focuses on quantization,
but other approaches could be used in conjunction of our
method to allow for further possible reduction on the model
size.

Quantization needs to be performed for both NN pa-



Figure 1. Top eigenvalue of each individual block of pre-trained ResNet20 on Cifar-10 (Left), and Inception-V3 on ImageNet (Right).
Note that the magnitudes of eigenvalues of different blocks varies by orders of magnitude. See Figure 6 and 7 in appendix for the 3D loss
landscape of other blocks.

rameters (i.e., weights) as well as the activations to reduce
the total memory footprint of the model during inference.
However, the main challenge here is that a na�̈ve quanti-
zation can lead to signi�cant loss in accuracy. In partic-
ular, it is not possible to reduce the number of bits of all
weights/activations of a general convolutional network to
ultra low-precision without signi�cant accuracy loss. This
is because not all the layers of a convolutional network al-
low the same quantization level. A possible approach to
address this is to use mixed-precision quantization, where
higher precision is used for certain “sensitive” layers of
the network, and lower precision for “non-sensitive” layers.
However, the search space for �nding the right precision
for each layer is exponential in the number of layers. More-
over, to avoid accuracy loss we need to perform �ne-tuning
(i.e. re-training) of the model. As we will discuss below,
quantizing the whole model at once and then �ne-tuning
is not optimal. Instead, we need to perform multi-stage
quantization, where at each stage parts of the network are
quantized to low-precision followed by quantization-aware
�ne-tuning to recover accuracy. However, the search space
to determine which layers to quantize �rst is factorial in
the number of layers. In this paper, we propose a Hessian
guided approach to address these challenges. In particular,
our contributions are the following.

1. The search space for choosing mixed-precision quanti-
zation is exponential in the number of layers. Thus, we
present a novel, deterministic method for determining
the relative quantization level of layers based on the
Hessian spectrum of each layer.

2. The search space for quantization-aware �ne-tuning of
the model is factorial in the number of blocks/layers.
Thus, we propose a Hessian based method to deter-
mine �ne-tuning order for different NN blocks.

3. We perform ablation study of HAWQ, and we present
novel quantization results using ResNet20 on Cifar10,

as well as Inception-V3/ResNet50/SqueezeNext on
ImageNet. Comparison with state-of-the-art shows
that our method achieves higher precision (up to 1%),
smaller model size (up to20%), and smaller activation
size (up to8� ).

The paper is organized as follows. First, inx 2, we will
discuss related works on model compression. This is fol-
lowed by describing our method inx 3, and our results in
x 4. Finally, we present ablation study inx 5, followed by
conclusions.

2. Related work

Recently, signi�cant efforts have been spent on de-
veloping new model compression solutions to reduce the
parameter size as well as computational complexity of
NNs [4, 8, 11, 29, 5, 46, 35, 17, 13, 3, 45]. In [9, 23, 21],
pruning is used to reduce the number of non-zero weights
in NN models. This approach is very useful for mod-
els that have very large fully connected layers (such as
AlexNet [18] or VGG [34]). For instance, the �rst fully-
connected layer in VGG-16 occupies 408MB alone, which
is 77.3% of total model size. Large fully-connected layers
have been removed in later convolutional neural networks
such as ResNet [10], and Inception family [37, 36].

Knowledge distillation introduced in [11] is another di-
rection for compressing NNs. The main idea is to distill
information from a pre-trained, large model into a smaller
model. For instance, it was shown that with knowledge dis-
tillation it is possible to reduce model size by a factor of3:6
with an accuracy of91:61%on Cifar-10 [31].

Another fundamental approach has been to architect
models which are, by design, both small and hardware-
ef�cient. An initial effort here was SqueezeNet [15] which
could achieve AlexNet level accuracy with50� smaller
footprint through network design, and additional10� re-
duction through quantization [8], resulting in a NN with
500� smaller memory footprint. Other notable works here



Figure 2. 1-D loss landscape for different blocks of ResNet20 on Cifar-10. The landscape is plotted by perturbing model weights along
the top Hessian eigenvector of each block, with a magnitude of� (i.e., � = 0 corresponds to no perturbation).

are [13, 32, 45, 22, 3], where more accurate networks are
presented. Another work here is SqueezeNext [7], where a
similar approach is taken, but with co-design of both hard-
ware architecture along with a compact NN model.

Quantization [1, 4, 29, 40, 20, 49, 46, 47, 2, 44] is an-
other orthogonal approach for model compression, where
lower bit representation are used instead of redesigning the
NN. One of the major bene�ts of quantization is that it in-
creases a NN's arithmetic intensity (which is the ratio of
FLOPs to memory accesses). This is particularly help-
ful for layers that are memory bound and have low arith-
metic intensity. After quantization, the volume of memory
accesses reduces, which can alleviate/remove the memory
bottleneck.

However, directly quantizing NNs to ultra low precision
may cause signi�cant accuracy degradation. One possi-
bility to address this is to use Mixed-Precision Quantiza-
tion [39, 48]. A second possibility, Multi-Stage Quanti-
zation, is proposed by [46, 6]. Both mixed-precision and
multi-stage quantization can improve the accuracy of quan-
tized NNs, but face an exponentially large search space. Ap-
plying existing methods often require huge computational
resources or ad-hoc rules to choose precision of different
layers which are problem/model speci�c and do not gener-
alize. The goal of our work here is to address this challenge
using second-order information.

3. Methodology

Assume that the NN is partitioned intom blocks de-
noted byf B1; B2 : : : ; Bm g, with learnable parameters
f W1; W2; : : : ; Wm g. A block can be a single/multiple
layer(s) (or a single/multiple residual block(s) for the case
of residual networks). For a supervised learning framework,
the loss functionL(� ) is:

L (� ) =
1
N

NX

i =1

l (x i ; yi ; � ); (1)

where� 2 Rd is the combination off W1; W2; : : : ; Wm g,
andl(x; y; � ) is the loss for a datum(x; y) 2 (X; Y ). Here,
X is the input set,Y is the corresponding label set, and
N = jX j is the size of the training set.

The training is performed by solving an Empirical Risk
Minimization problem, to �nd the optimal model parame-
ters. This process is typically performed in single precision,
where both the weights and activations are stored with 32-
bit precision.

After the training is �nished, each of these blocks will
have a speci�c distribution of �oating point numbers for
both the parameters,� , as well as input/output activations.
For quantization, we need to restrict these �oating numbers
to a �nite set of values, de�ned by the following function:

Q(z) = qj ; for z 2 (t j ; t j +1 ]; (2)

where (t j ; t j +1 ] denotes an interval in the real numbers
(j = 0 ; : : : ; 2k � 1), k is the quantization bits, andz is
either an activation or the weights. This means that all the
values in the range of(t j ; t j +1 ] are mapped toqj . In the ex-
treme case of binary quantization (k = 1 ), Q(z) is basically
the sign function. For cases other than binary quantization,
the choice of these intervals can be important. One popular
option is to use a uniform quantization function, where the
above range is equally split [47, 14]. However, it has been
argued that (i) not all layers have the same distribution of
�oating point values, and (ii) the network can have signi�-
cantly differentsensitivityto quantization of each layer. To
address the �rst issue, different quantization schemes such
as uniformly discretizing logarithmic-domain have been
proposed [25]. However, this does not completely address
the sensitivity problem. A sensitive layer cannot be quan-
tized to the same level as a non-sensitive layer.

One possible approach that can be used to measure quan-
tization sensitivity is to use �rst-order information, based
on the gradient vector. However, the gradient can be very
misleading. This can be easily illustrated by considering a
simple 1-d parabolic function of the formy = 1

2 ax2 at ori-
gin (i.e., x = 0 ). The gradient signal at the origin is zero,



Algorithm 1: Power Iteration for Hessian Eigenvalue
Computation

Input: Block Parameter:Wi .
Compute the gradient ofWi by backpropagation,i.e.,
gi = dL

dW i
.

Draw a random vectorv (same dimension asWi ).
Normalizev, v = v

kvk

for i = 1 ; 2; : : : ; n do // Power Iteration

Computegv = gT
i v // Inner product

ComputeHv by backpropagation,Hv = d(gv)
dW i

// Get Hessian vector product

Normalize and resetv, v = Hv
kHv k

irrespective of the value ofa. However, this does not mean
that the function is not sensitive to perturbation inx. We can
get a better metrics for sensitivity by using second-order in-
formation, based on the Hessian matrix. This clearly shows
that higher values ofa result in more sensitivity to input
perturbations.

For the case of high dimensions, the second order infor-
mation is stored in the Hessian matrix, of sizeni � ni for
each block. For this case, we can compute the eigenvalues
of the Hessian to measure sensitivity, as described next.

3.1. SecondOrder Information

We compute the eigenvalues of the Hessian (i.e., the
second-order operator) of each block in the network. Note
that it is not possible to explicitly form the Hessian since
the size of a block (denoted byni for ith block) can be
quite large. However, it is possible to compute the Hessian
eigenvalues without explicitly forming it, using a matrix-
free power iteration algorithm [43, 24, 42]. This method re-
quires computation of the so-called Hessianmatvec, which
is the result of multiplication of the Hessian matrix with a
given (possibly random) vectorv. To illustrate how this can
be done for a deep network, let us �rst denotegi as the gra-
dient of lossL with respect to thei th block parameters,

gi =
@L

@Wi
: (3)

For a random vectorv (which has the same dimension as
gi ), we have:

@(gT
i v)

@Wi
=

@gTi
@Wi

v + gT
i

@v
@Wi

=
@gTi
@Wi

v = H i v; (4)

whereH i is the Hessian matrix ofL with respect toWi .
We can then use power-iteration method to compute the
top eigenvalue ofH i , as shown in Algorithm 1. Intuitively
the algorithm requires multiple evaluations of the Hessian
matvec, which can be computed using Eq. 4.

Algorithm 2: Hessian AWare Quantization
Input: Block-wise Hessian eigenvalues� i (computed

from Algorithm 1), and block parameter size
ni for i = 1 ; � � � ; m.

for i = 1 ; 2; : : : ; m do // Quantization Precision

Si = � i =ni // See Eq. 5

OrderSi in descending order and determine relative
quantization precision for each block.

Compute� Wi based on Eq. 2.
for i = 1 ; 2; : : : ; m do // Fine-Tuning Order


 i = � i k� Wi k2 // See Eq. 6

Order
 i in descending order and perform block-wise
�ne-tuning

It is well known, based on the theory of Minimum De-
scription Length (MDL), that fewer bits are required to
specify a �at region up to a given threshold, and vice versa
for a region with sharp curvature [30, 12]. The intuition
for this is that the noise created by imprecise location of a
�at region is not magni�ed for a �at region, making it more
amenable to aggressive quantization. The opposite is true
for sharp regions, in that even small round off errors may be
ampli�ed. Therefore, it is expected that layers with higher
Hessian spectrum (i.e., larger eigenvalues) are more sensi-
tive to quantization. The distribution of these eigenvalues
for different blocks are shown in Figure 1 for ResNet20 on
CIFAR-10 and Inception-V3 on ImageNet. As one can see,
different blocks exhibit orders of magnitude difference in
the Hessian spectrum. For instance, ResNet20 is an order of
magnitude more sensitive to perturbations to its9th block,
than its last block.

To further illustrate this, we provide 1D visualizations of
the loss landscape as well. To this end, we �rst compute
the Hessian eigenvector of each block, and we perturb each
block individually along the eigenvector and compute how
the loss changes. This is illustrated in Figure 2 and 3 for
ResNet20 (on Cifar-10) and Inception-V3 (on ImageNet),
respectively. It can be clearly seen that blocks with larger
Hessian eigenvalue (i.e., sharper curvature) exhibit larger
�uctuations in the loss, as compared to those with smaller
Hessian eigenvalue (i.e., �atter curvature). A correspond-
ing 3D plot is also shown in Figure 1, where instead of just
considering the top eigenvector, we also compute the sec-
ond top eigenvector and visualize the loss by perturbing the
weights along these two directions. These surface plots are
computed for the9th and last blocks of ResNet20, as well
as 2nd and last blocks of Inception-V3 (the loss landscape
for other blocks is shown in Figure 6 and Figure 7 in the
Appendix).



Figure 3. 1-D loss landscape of all blocks of Inception-V3 on ImageNet along the �rst dominant eigenvector of the Hessian. Here� is the
scalar that perturbs the parameters of the corresponding block along the �rst dominant eigenvectors.

3.2. Algorithm

We approximate the Hessian as a block diagonal matrix,
scaled by its top eigenvalue� as f H i � � i I gm

i =1 , where
m is the number of blocks in the network. Based on the
MDL theory, layers with large� cannot be quantized to ultra
low precision without signi�cant perturbation to the model.
Thus we can use the Hessian spectrum of each block to sort
the different blocks and perform less aggressive quantiza-
tion to layers with large Hessian spectrum. However, some
of these blocks may contain very large number of parame-
ters, and using higher bits here would lead to large memory
footprint of the quantized network. Therefore, as a com-
promise, we weight the Hessian spectrum with the block's
memory footprint and use the following metric for sorting
the blocks:

Si = � i =ni ; (5)

where� i is the top eigenvalue ofH i . Based on this sort-
ing, layers that have large number of parameters and have
small eigenvalue would be quantized to lower bits, and vice
versa. That is, afterSi is computed, we sortSi in descend-
ing order and use it as a metric to determine the quantization
precision.1

Quantization-aware re-training of the neural network is
necessary to recover performance which can sharply drop
due to ultra-low precision quantization. A straightforward

1Note that, as mentioned in the limitations section,Si does not give
us the exact bit precision but a relative ordering for the bits of different
blocks.

way to do this is to re-train (hereafter referred to as �ne-
tune) the whole quantized network at once. However, as we
will discuss inx4, this can lead to sub-optimal results. A
better strategy is to perform multi-stage �ne-tuning. How-
ever, the order in multi-stage tuning is important and differ-
ent ordering could lead to very different accuracies.

We sort different blocks for �ne-tuning based on the fol-
lowing metric:


 i = � i kQ(Wi ) � Wi k2
2; (6)

wherei refers toi th block,� i is the Hessian eigenvalue, and
kQ(Wi ) � Wi k2 is theL 2 norm of quantization perturba-
tion. The intuition here is to �rst �ne-tune layers that have
high curvature as well as large number of parameters which
cause more perturbations after quantization. Note that the
latter metric depends on the bits used for quantization and
thus is not a �xed metric. (See Table 5 in the Appendix,
where we show how this metric changes for different quan-
tization precision.) The motivation for choosing this order
is that �ne-tuning blocks with large
 i can signi�cantly af-
fect other blocks, thus making prior �ne-tuning of layers
with small
 i futile.

4. Results

In this section, we �rst present our quantization results
for ResNet20 on Cifar-10, and then we present our results
for Inception-V3, ResNet50, and SqueezeNext quantization
on ImageNet. See the Appendix for details regarding the
training procedure and hyper-parameters used.



Table 1. Quantization results of ResNet20 on Cifar-10. We ab-
breviate quantization bits used for weights as “w-bits,” activa-
tions as “a-bits,” testing accuracy as “Acc,” and compression ra-
tio of weights/activations as “W-Comp/A-Comp.” Furthermore,
we show results without using Hessian information (“Direct”), as
well as other state-of-the-art methods [47, 2, 44]. In particular, we
compare with the recent proposed DNAS approach of [39]. Our
method achieves similar testing performance with signi�cantly
higher compression ratio (especially in activations). Here “MP”
refers to mixed-precision quantization, and the lowest bits used
for weights and activations are reported. Also note that [47, 2, 44]
use 8-bit for �rst and last layers. The exact per-layer con�guration
for mixed-precision quantized ResNet20 is presented in appendix.

Quantization w-bits a-bits Acc W-Comp A-Comp

Baseline 32 32 92.37 1.00� 1.00�

Dorefa [47] 2 2 88.20 16.00� 16.00�
Dorefa [47] 3 3 89.90 10.67� 10.67�
PACT [2] 2 2 89.70 16.00� 16.00�
PACT [2] 3 3 91.10 10.67� 10.67�
LQ-Nets [44] 2 2 90.20 16.00� 16.00�
LQ-Nets [44] 3 3 91.60 10.67� 10.67�
LQ-Nets [44] 2 32 91.80 16.00� 1.00�
LQ-Nets [44] 3 32 92.00 10.67� 1.00�
DNAS [39] 1 MP 32 92.00 16.60� 1.00�
DNAS [39] 1 MP 32 92.72 11.60� 1.00�

Direct 2 MP 4 90.34 16.00� 8.00�
HAWQ 2 MP 4 92.22 13.11� 8.00�

Cifar-10 After computing the eigenvalues of block Hes-
sian (shown in Figure 1), we compute the weighted sensi-
tivity metric of Eq. 5, along with
 i based on Eq. 6. We
then perform the quantization based on HAWQ algorithm.
Results are shown in Table 1.

For comparison, we test the quantization performance
without using the Hessian information, which we refer to
as “Direct” method, as well as other methods in the liter-
ature including Dorefa [47], PACT [2], LQ-Net [44], and
DNAS [39], as shown in Table 1.

For methods that use Mixed-Precision (MP) quantiza-
tion, the lowest bits used for weights (“w-bits”), and acti-
vations (“a-bits”) are reported.

The Direct method achieves good compression, but it re-
sults in2:03%accuracy drop, as shown in Table 1.Further-
more, comparison with other state-of-the-art shows a simi-
lar trend. There have been several methods proposed in the
literature to address this reduction, with the latest method
introduced in [44], where a learnable quantization method
is used. As one can see, LQ-Nets results in0:77% accu-
racy degradation with10:67� compression ratio, whereas
HAWQ has only0:15% accuracy drop with13:11� com-
pression. Moreover, HAWQ achieves similar accuracy as
compared to DNAS [39] but with8� higher compression
ratio for activations.

ImageNet Here, we test the HAWQ method for quantiz-
ing Inception-V3 [37] on ImageNet. Inception-V3 is ap-
pealing for ef�cient hardware implementation, as it does
not use any residual connections. Such non-linear struc-
tures create dependencies that may be very dif�cult to op-
timize for fast inference [41]. As before, we �rst compute
the block Hessian eigenvalues, which are reported in Fig-
ure 1, and then compute the corresponding weighted sen-
sitivity metric. We also plot the 1D loss landscape of all
Inception-V3 blocks in Figure 3.

We report the quantization results in Table 2, where as
before we compare with a direct quantization, as well as
recently proposed “Integer-Only” [16], and RVQuant meth-
ods [27]. Direct quantization of Inception-V3 (i.e., without
use of second-order information), results in7:69%accuracy
degradation. Using the approach proposed in [16] results in
more than2%accuracy drop, even though it uses higher bit
precision. However, HAWQ results in an accuracy gap of
2% with a compression ratio of12:04� , both of which are
better than previous work [16, 27].2

We also compare with Deep Compression [8] and the
AutoML based method of HAQ, which has been recently
introduced [38]. We compare our HAWQ results with
their ResNet50 quantization results, as shown in Table 3.
HAWQ achieves higher top-1 accuracy of 75.48% with a
model size of 7.96MB, whereas the AutoML based HAQ
method has a top-1 of 75.30% even with 16% larger model
size of 9.22MB.

Furthermore, we apply HAWQ to quantize
SqueezeNext [7] on ImageNet. We choose the wider
SqueezeNext model which has a baseline accuracy of
69:38% with 2.5 million parameters (10.1MB in single
precision). We are able to quantize this model to uniform
8-bit precision, with just 0.04% top-1 accuracy drop.
Direct quantization of SqueezeNext (i.e., without use
of second-order information), results in3:98% accuracy
degradation. HAWQ results in an unprecedented 1MB
model size, with only 1.36% top-1 accuracy drop. The
signi�cance of this result is that it allows deployment of
the whole model on-chip or on hardwares with very limited
memory and power constraints.

5. Ablation Study

Here we discuss the ablation study for the HAWQ. The
HAWQ method has two main steps: (i) relative precision
order for different blocks using second-order information,
and (ii) relative order for �ne-tuning these blocks. Below
we discuss the ablation study for each step separately.

2We should emphasize here that the work of [16] uses integer arith-
metic, and it is not completely fair to compare their results with ours.



Table 2. Quantization results of Inception-V3 on ImageNet.
We abbreviate quantization bits used for weights as “w-bits,”
activations as “a-bits,” top-1 testing accuracy as “Top-1,” and
weight compression ratio as “W-Comp.” Furthermore, we com-
pare HAWQ with direct quantization method without using Hes-
sian (“Direct”) and Integer-Only method [16]. Here “MP” refers
to mixed-precision quantization. We report the exact per-layer
con�guration for mixed-precision quantization in appendix. Com-
pared to [16, 27], we achieve higher compression ratio with higher
testing accuracy.

Method w-bits a-bits Top-1 W-Comp Size(MB)

Baseline 32 32 77.45 1.00� 91.2

Integer-Only [16] 8 8 75.40 4.00� 22.8
Integer-Only [16] 7 7 75.00 4.57� 20.0
RVQuant [27] 3 MP 3 MP 74.14 10.67� 8.55

Direct 2 MP 4 MP 69.76 15.88� 5.74
HAWQ 2 MP 4 MP 75.52 12.04� 7.57

Table 3. Quantization results of ResNet50 on ImageNet. We show
results of state-of-the-art methods [47, 2, 44, 8]. In particular, we
also compare with the recent proposed AutoML approach of [38].
We achieve higher compression ratio with higher testing accuracy
compared to [38]. Also note that [47, 2, 44] use 8-bit for �rst and
last layers.

Method w-bits a-bits Top-1 W-Comp Size(MB)

Baseline 32 32 77.39 1.00� 97.8

Dorefa [47] 2 2 67.10 16.00� 6.11
Dorefa [47] 3 3 69.90 10.67� 9.17
PACT [2] 2 2 72.20 16.00� 6.11
PACT [2] 3 3 75.30 10.67� 9.17
LQ-Nets [44] 3 3 74.20 10.67� 9.17
Deep Comp. [8] 3 MP 75.10 10.41� 9.36
HAQ [38] MP MP 75.30 10.57� 9.22

HAWQ 2 MP 4 MP 75.48 12.28� 7.96

Table 4. Quantization results of SqueezeNext on ImageNet. We
show a case where HAWQ is used to achieved uniform quantiza-
tion to 8 bits for both weights and activations, with an accuracy
similar to ResNet18. We also show a case with mixed precision,
where we compress SqueezeNext to a model with just 1MB size
with only 1.36% accuracy degradataion. Furthermore, we com-
pare HAWQ with direct quantization method without using Hes-
sian (“Direct”).

Method w-bits a-bits Top-1 W-Comp Size(MB)

Baseline 32 32 69.38 1.00� 10.1
ResNet18 [28] 32 32 69.76 1.00� 44.7

HAWQ 8 8 69.34 4.00� 2.53
Direct 3 MP 8 65.39 9.04� 1.12
HAWQ 3 MP 8 68.02 9.25� 1.09

Figure 4. Accuracy recovery from Hessian aware mixed-
precision quantization versus HAWQ-Reverse-Precision quanti-
zation. Here, we show top-1 accuracy of quantized Inception-
V3 on ImageNet. HAWQ-Reverse-Precision achieves 66.72%
(compression-ratio 7.2) top-1 accuracy, while our HAWQ method
achieves 74.36% (compression-ratio 12.0) top-1 accuracy (7.64%
better) with a higher convergence speed (30 epochs v.s. 50 epochs
of HAWQ-Reverse-Precision).

Figure 5. Effectiveness of Hessian aware block-wise �ne-tuning.
Here, HAWQ shows the quantization process based on the de-
scending order of
 i for Inception-V3 with Hessian aware quanti-
zation order. HAWQ-Reverse-Tuning shows the quantization pro-
cess of Inception-V3 with a reverse order. Note that HAWQ �n-
ishes the �ne-tuning of this block in just 25 epochs and switches to
�ne-tuning another block, whereas HAWQ-Reverse-Tuning takes
50 epochs for this block, before converging to sub-optimal top-1.

5.1. Hessian AWare Mixed Precision Quantization

We �rst discuss the ablation study for step (i), where the
quantization precision is chosen based on Eq. 5. As dis-
cussed above, blocks with higher values ofSi are assigned
higher quantization precision, and vice versa for layers with
relatively lower values ofSi . For the ablation study we re-
verse this order and avoid performing the block-wise �ne-
tuning of step (ii) so we can isolate step (i). Instead of the
�ne-tuning phase, we re-train the whole network at once
after the quantization is performed. The results are shown
in Figure 4, where we perform 50 epochs of �ne-tuning us-
ing Inception-V3 on ImageNet. As one can see, HAWQ re-



sults in signi�cantly better accuracy (74.26% as compared
to 66.72%) than the reverse method (labeled as “HAWQ-
Reverse-Precision”). This is despite the fact that the latter
approach only has a compression ratio of7:2� , whereas
HAWQ has a compression ratio of12:0� .

Another interesting observation is that the convergence
speed of the Hessian aware approach is signi�cantly faster
than the reverse method. Here, HAWQ converges in about
30 epochs, whereas the HAWQ-Reverse-Precision case
takes 50 epochs before converging to a sub-optimal value
(Figure 4).

5.2. BlockWise FineTuning

Here we perform the ablation study for the Hessian based
�ne-tuning part of HAWQ. The block-wise �ne tuning is
performed based on
 i (Eq. 6) of each block. The blocks
are �ne-tuned based on the descending order of
 i . Simi-
lar to the above, we compare the quantization performance
when a reverse ordering is used (i.e., we use the ascending
order of
 i and refer to this as “HAWQ-Reverse-Tuning”).

We test this ablation study using Inception-V3 on Ima-
geNet, as shown in Figure 5. As one can see, the �ne-tuning
for HAWQ method quickly converges in just 25 epochs,
allowing it to switch to �ne-tuning the next block. How-
ever, “HAWQ-Reverse-Tuning” takes more than 50 epochs
to converge for this block.

6. Conclusions

We have introduced HAWQ, a new quantization method
for neural network training. Our method is based on ex-
ploiting second-order (Hessian) information to systemati-
cally select both quantization precision as well as the or-
der for block-wise �ne-tuning. We performed an ablation
study for both the relative quantization bit-order for differ-
ent blocks, as well as the �ne-tuning order. We showed that
HAWQ can achieve good testing performance with high
compression-ratio, as compared to state-of-the-art. In par-
ticular, we showed results for ResNet20 on Cifar-10, where
we can achieve similar testing performance as [39], but
with 8� higher compression ratio for activations. We also
showed results for Inception-V3 on ImageNet, for which
we showed ultra low precision quantization results with 2-
bit for weights and 4-bit for activations, with only1:93%
accuracy drop. For ResNet50 model, our approach re-
sults in higher accuracy of 75.48% with smaller model size
of 7.96MB, as compared to HAQ method with top-1 of
75.30% and 9.22MB [38]. Furthermore, our method ap-
plied to SqueezeNext can result in an unprecedented 1MB
model size with 68.02% top-1 accuracy on ImageNet.

Limitations and Future Work.We believe it is critical
for every work to clearly state its limitations, especially in
this area. An important limitation is that computing the

second-order information adds some computational over-
head. However, we only need to compute the top eigen-
value of the Hessian, which can be found using the matrix-
free method presented in Algorithm 1. (The total compu-
tational overhead is equivalent to about 20 gradient back-
propogations to compute top Hessian eigenvalue of each
block). Another limitation is that in this work we solely
focused on image classi�cation, but it would be interest-
ing to see how HAWQ would perform for more complex
tasks such as segmentation, object detection, or natural lan-
guage processing. Furthermore, one has to consider that
implementation of a NN with mixed-precision inference
for embedded processors is not as straightforward as the
case with uniform quantization precision. Practical solu-
tions have been proposed in recent works [33]. Another
limitation is that we can only determine the relative order-
ing for quantization precision, and not the absolute value of
the bits. However, the search space for this is signi�cantly
smaller than the original exponential complexity. Finally,
even though we showed bene�ts of HAWQ as compared
to DNAS [39] or HAQ [38], it may be possible to combine
these methods for more ef�cient AutoML search. We leave
this as part of future work.

Acknowledgments

This work was supported by a gracious fund from In-
tel corporation, Berkeley Deep Drive (BDD), and Berkeley
AI Research (BAIR) sponsors. We would like to thank the
Intel VLAB team for providing us with access to their com-
puting cluster. We also gratefully acknowledge the support
of NVIDIA Corporation for their donation of two Titan Xp
GPU used for this research. We would also like to acknowl-
edge ARO, DARPA, NSF, and ONR for providing partial
support of this work.

References

[1] Krste Asanovic and Nelson Morgan.Experimental determi-
nation of precision requirements for back-propagation train-
ing of arti�cial neural networks. International Computer Sci-
ence Institute, 1991.

[2] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. Pact: Parameterized clipping activa-
tion for quantized neural networks. arXiv preprint
arXiv:1805.06085, 2018.

[3] François Chollet. Xception: Deep learning with depthwise
separable convolutions. InProceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1251–1258, 2017.

[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. InAdvances in neural
information processing systems, pages 3123–3131, 2015.



[5] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann Le-
Cun, and Rob Fergus. Exploiting linear structure within con-
volutional networks for ef�cient evaluation. InAdvances
in neural information processing systems, pages 1269–1277,
2014.

[6] Yinpeng Dong, Renkun Ni, Jianguo Li, Yurong Chen, Jun
Zhu, and Hang Su. Learning accurate low-bit deep neural
networks with stochastic quantization.British Machine Vi-
sion Conference, 2017.

[7] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai,
Xiangyu Yue, Peter Jin, Sicheng Zhao, and Kurt Keutzer.
Squeezenext: Hardware-aware neural network design.Work-
shop paper in CVPR, 2018.

[8] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding.International Con-
ference on Learning Representations, 2016.

[9] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for ef�cient neural network. In
Advances in neural information processing systems, pages
1135–1143, 2015.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. InProceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[11] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network.Workshop paper in NIPS,
2014.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima.Neu-
ral Computation, 9(1):1–42, 1997.

[13] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Ef�cient convolu-
tional neural networks for mobile vision applications.arXiv
preprint arXiv:1704.04861, 2017.

[14] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Quantized neural networks:
Training neural networks with low precision weights and
activations. The Journal of Machine Learning Research,
18(1):6869–6898, 2017.

[15] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[16] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for ef�cient integer-arithmetic-only inference. InProceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2704–2713, 2018.

[17] Raghuraman Krishnamoorthi. Quantizing deep convolu-
tional networks for ef�cient inference: A whitepaper.arXiv
preprint arXiv:1806.08342, 2018.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classi�cation with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[19] Yann LeCun, Ĺeon Bottou, Yoshua Bengio, Patrick Haffner,
et al. Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[20] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks.
arXiv preprint arXiv:1605.04711, 2016.

[21] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning �lters for ef�cient convnets.arXiv
preprint arXiv:1608.08710, 2016.

[22] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shuf�enet v2: Practical guidelines for ef�cient cnn architec-
ture design. InProceedings of the European Conference on
Computer Vision (ECCV), pages 116–131, 2018.

[23] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu,
Yu Wang, and William J Dally. Exploring the regularity of
sparse structure in convolutional neural networks.Workshop
paper in CVPR, 2017.

[24] James Martens. Deep learning via hessian-free optimization.
In ICML, volume 27, pages 735–742, 2010.

[25] Daisuke Miyashita, Edward H Lee, and Boris Murmann.
Convolutional neural networks using logarithmic data rep-
resentation.arXiv preprint arXiv:1603.01025.

[26] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for re-
source ef�cient inference.arXiv preprint arXiv:1611.06440,
2016.

[27] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. Value-aware
quantization for training and inference of neural networks.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 580–595, 2018.

[28] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

[29] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classi�cation using bi-
nary convolutional neural networks. InEuropean Conference
on Computer Vision, pages 525–542. Springer, 2016.

[30] Jorma Rissanen. Modeling by shortest data description.Au-
tomatica, 14(5):465–471, 1978.

[31] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets.arXiv preprint arXiv:1412.6550,
2014.

[32] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. InProceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018.

[33] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai,
Benson Chau, Vikas Chandra, and Hadi Esmaeilzadeh. Bit
fusion: Bit-level dynamically composable architecture for
accelerating deep neural networks. InProceedings of the
45th Annual International Symposium on Computer Archi-
tecture, pages 764–775. IEEE Press, 2018.

[34] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. InInternational
Conference on Learning Representations, 2015.



[35] Sanghyun Son, Seungjun Nah, and Kyoung Mu Lee. Cluster-
ing convolutional kernels to compress deep neural networks.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 216–232, 2018.

[36] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alexander A Alemi. Inception-v4, inception-resnet and the
impact of residual connections on learning. InThirty-First
AAAI Conference on Arti�cial Intelligence, 2017.

[37] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. InProceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2818–2826, 2016.

[38] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
HAQ: Hardware-aware automated quantization.In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2019.

[39] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian,
Peter Vajda, and Kurt Keutzer. Mixed precision quantiza-
tion of convnets via differentiable neural architecture search.
arXiv preprint arXiv:1812.00090, 2018.

[40] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and
Jian Cheng. Quantized convolutional neural networks for
mobile devices. InProceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4820–
4828, 2016.

[41] Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang,
Liang Ma, Giulio Gambardella, Michaela Blott, Luciano
Lavagno, Kees Vissers, John Wawrzynek, et al. Synetgy:
Algorithm-hardware co-design for convnet accelerators on
embedded fpgas. InProceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Ar-
rays, pages 23–32. ACM, 2019.

[42] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael Ma-
honey. Large batch size training of neural networks with
adversarial training and second-order information.arXiv
preprint arXiv:1810.01021, 2018.

[43] Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and
Michael W Mahoney. Hessian-based analysis of large batch
training and robustness to adversaries.Advances in Neural
Information Processing Systems, 2018.

[44] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang
Hua. LQ-Nets: Learned quantization for highly accurate and
compact deep neural networks. InThe European Conference
on Computer Vision (ECCV), September 2018.

[45] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shuf�enet: An extremely ef�cient convolutional neural net-
work for mobile devices. InProceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
6848–6856, 2018.

[46] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong
Chen. Incremental network quantization: Towards lossless
cnns with low-precision weights.International Conference
on Learning Representations, 2017.

[47] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients.arXiv
preprint arXiv:1606.06160, 2016.

[48] Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man
Cheung, and Pascal Frossard. Adaptive quantization for deep
neural network. InThirty-Second AAAI Conference on Arti-
�cial Intelligence, 2018.

[49] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally.
Trained ternary quantization.International Conference on
Learning Representations (ICLR), 2017.



7. Appendix

Here, we provide additional experimental results as well as quantization details for the neural networks that we tested.

� In x 7.1 we discuss the �ne-tuning details.

� In x 7.2 we present extra results for 3D plots for loss landscape of different blocks of ResNet20 and Inception-V3 as
well as exemplary results showing distribution of
 i in Eq. 6.

� In x 7.3 we show the exact bit-precision used for different blocks of ResNet20 on Cifar-10 as well as Inception-V3 on
ImageNet.

7.1. Finetuning details

The results were tested on two classi�cation datasets of Cifar-10 and ImageNet:

Cifar-10 This is a classi�cation dataset with 10 classes consisting of 50,000 training images and 10,000 test images of size
3 � 32 � 32. We used pre-trained ResNet20 model and performed quantization on this model in PyTorch framework. We
follow the same learning rate policy as the baseline (i.e., decaying learning rate from 1e-1 to 1e-4).

ImageNet This is a classi�cation problem with 1000 classes consisting of more than 1.2 million training images and 50,000
validation images of size3 � 224� 224on SqueezeNext and ResNet50 , and3 � 299� 299on Inception-V3. (i) We used
pre-trained Inception-V3 model and used a �xed learning rate of 2e-4 for �ne-tuning of each block. (ii) We used pre-trained
ResNet50 model and used a �xed learning rate of 1e-4 for �ne-tuning of each block. (iii) We used pre-trained SqueezeNext
and used a �xed learning rate of 1e-4 for �ne-tuning of each block. All experiments were performed on PyTorch framework.
As for data augmentation, we used standard random crop, resizing and horizontal �ip in all experiments.

7.2. Extra results

In Table 5, we show how
 i changes as a function of quantization precision. In Figure 6, we plot the rest surface
visualization of ResNet20 on Cifar-10. And in Figure 7, we plot the rest surface visualization of Inception-V3 on ImageNet.

Table 5. Here we show how
 i changes as a function of target weight bit precision. Results are computed for ResNet20 on Cifar-10.

Block
Precision

8-bit 6-bit 4-bit 3-bit 2-bit

Block 3 0.03 0.52 9.25 41.9 191
Block 5 0.05 0.81 14.0 65.1 309
Block 8 0.29 4.83 84.8 392 2056

7.3. Mixedprecision details

In this section, we give the details about how we separate blocks and details about weight/activation precision of each
individual block. We show the exact bit-precision used for different blocks of ResNet20 (Table 6) on Cifar-10 as well as
Inception-V3 (Table 7) on ImageNet.



Figure 6. 3-D loss landscape of all blocks of ResNet20 on Cifar-10 along the �rst two dominant eigenvectors of the Hessian. Here� 1 ,
� 2 are scalars that perturb the parameters of the corresponding block along the �rst and second dominant eigenvectors. The corresponding
eigenvalue distribution for different blocks is also shown in Figure 1.


