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1. TRB annotating

Recall that in the definition of TRB, in each keypoint
triplet, there exists one skeleton keypoint and two corre-
sponding contour keypoints. The proposed contour key-
points are annotated on three pose estimation datasets:
MPI[1], LSP[4] and COCO[6]. In this part, annotation per-
formance analysis is conducted using 5000 redundantly an-
notated images in COCO-trb. Besides that, more annotated
examples on three datasets are provided.

1.1. Annotation performance Analysis

We introduce contour points as a new type of 2D human
keypoints, they are defined on each side of the correspond-
ing skeleton keypoint, locate on human boundary. Does this
definition carries clear enough semantic meaning? To vali-
date this, 5000 images were redundantly annotated by two
groups of annotators. During annotation, skeleton is not
provided as additional guidance. Following [10], to mea-
sure the clarity of contour keypoint i, we use standard devi-
ation σi with respect to object scale s as the metric, which
can be written as:

σ2
i = E[d2

i /area] (1)

In which di denotes the euclidean distance of the same con-
tour keypoint annotated by different annotators, and area is
the size of ground-truth human bounding box, which repre-
sents the object scale. The average results on 5000 images
was used as an approximate of the expectation. Please refer
to Table 1 and Figure 1.

Comparing to the same metric for skeleton keypoints
provided in [10]. Some characteristic of contour keypoints
can be concluded: 1. The definition of contour keypoints is
as clear as skeleton keypoints for labeling. 2. Medial con-
tour points are less ambiguous than lateral contour points
during labeling, thanks to the strong visual evidence on hu-
man medial boundary.

Figure 1. σi of different keypoints. Red points denote larger
sigma and green points denote smaller sigma.

Table 1. σi of different keypoints
Sho. Elb. Wri. Hip Knee Ank.

Skeleton 0.079 0.072 0.062 0.107 0.087 0.089
Medial contour 0.065 0.072 0.087 0.073 0.075 0.075
Lateral contour 0.069 0.081 0.091 0.099 0.085 0.083

1.2. Samples of annotated images

TRB annotations on three datasets are visualized in Fig-
ure 2. The MPII dataset covers 410 different activities in
daily life, which includes around 25K images containing
over 40K people. LSP and extended LSPET contain 12K
images. MPII has a relevant lower error tolerance than oth-
ers for its evaluation metric. LSP contains more complex
and rare poses with relevant low resolution. Most images
in LSP and MPII contains whole body or whole upper body
of the target person. In COCO, there exists pose instances
in which only one small part is visible, like one leg or one
arm. COCO is a more in-the-wild dataset and is considered
as one of the most challenging 2D human pose benchmark.

1
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2. Message Passing in TRB-Net
2.1. Formulation

Let I be an image, s = {s1, s2, · · · , sN} be the locations
of N skeleton key points, c = {c1, c2, · · · , cM} be the lo-
cations of M contour key points. We could model the TRB
estimation problem as an inferring process to conditional
probability p(s, c|I,Θ) parameterized by Θ, and relies on a
Gibbs distribution:

p(s, c|I,Θ) =
e−En(s,c,I,Θ)

S

=
e−En(s,c,I,Θ)∑

s∈S,c∈C e
−En(s,c,I,Θ)

(2)

where En(s, c, I,Θ) denotes the energy function. Accord-
ing to the previous work [2], the process could be imple-
mented with neural networks.1 According to the main pa-
per, the probability can be re-formulated as:

p(s, c|I,Θ) =
∑
hs

∑
hc

p(s, c, hs, hc|I,Θ)

=
e−En(s,c,hs,hc,I,Θ)∑
e−En(s,c,hs,hc,I,Θ)

(3)

where

En(s, c, hs, hc, I,Θ) =
∑

(i,j)∈εs

δs[ψs(si, sj)]

+
∑

(p,q)∈εc

δc[ψc(cp, cq)] +
∑

(i,p)∈εsc

δsc[ψsc(si, cp)]

+
∑

(i,k)∈εshs

ψshs(si, h
s
k) +

∑
(p,k)∈εchc

ψchc(cp, h
c
k)

+
∑
k

Φ(hsk, h
c
k) +

∑
k

γ(hk, I)

In practice, we implement the terms in above
Equation with the modules we proposed un-
der the framework of CNNs. Specifically,∑
(i,j)∈εs

δs[ψs(si, sj)],
∑

(p,q)∈εc
δc[ψc(cp, cq)],

∑
(i,p)∈εsc

δsc[ψsc(si, cp)]

are corresponding to the Triplet Constraints we defined,
the three terms respectively represents three types of
important pairs of landmarks: skeleton-skeleton pair,
contour-contour pair and skeleton-contour pairs. We
implement these three terms using pairwise mapping.∑
(i,k)∈εshs

ψshs(si, h
s
k),

∑
(p,k)∈εchc

ψchc(cp, h
c
k) are two

terms implemented by the multi-task network. Φ(hsk, h
c
k) is

implemented by X-structure and direction convolution.
To present the difference of our message passing process

with other models directly, we visualize the message propa-
gation of different models in Figure 3 and message passing
instance of our model in Figure 4.

1Please refer to the reference [2] for more theoretical derivation.
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(a) (b) (c) (d) (e)

Figure 4. Message Passing. (a) is a person with annotated land-
marks. (b) is the tree structured model of human with additional
contour landmarks. (c,d) shows message passing on part of the
graph in (b) with different directions. (e) demonstrates all possible
message passing routes among all body landmarks.

2.2. Details of Warping in Pairwise Mapping

Here, we detail the warping operation mentioned in
Sec.4 of the main paper. Using W to denote the estimated
warping, H to denote the heatmap before warping, H ′ to
denote the heatmap after warping. The forwarding can be
formulated as

H ′<i,j> = H<i,j>+W<i,j>
(4)

W<i,j> denotes the corresponding value of warping to pixel
< i, j > on heatmap after warping. Assume its value is
< ∆i,∆j >, so that we have:

H ′<i,j> = H<i+∆i,j+∆j> (5)

However, < i + ∆i, j + ∆j > may not be a coordinate
located on the integer grid points, which brings difficulty
to backward gradients. To issue the problem, we use linear
interpolation to get an approximate value on this point. For
convenience, we divide < i + ∆i, j + ∆j > into integer
part < x, y > and decimal part < ẋ, ẏ >:

< i+ ∆i, j + ∆j >=< x, y > + < ẋ, ẏ > (6)

Hence we have:

H ′<i,j> =(1− ẋ)(1− ẏ)H<bxc,byc>

+ ẋ(1− ẏ)H<bxc+1,byc>

+ (1− ẋ)ẏH<bxc,byc+1>

+ ẋẏH<bxc+1,byc+1>.

(7)

During backward pass, the gradient of one pixel on
the warped heatmap will flow to both original heatmaps
and the estimated warping. Examples are demonstrated
below(W<i,j>(0) and W<i,j>(1) denotes respectively x-
component and y-component of estimated warping):

∂H ′<i,j>
∂H<bxc,byc>

=(1− ẋ)(1− ẏ)

∂H ′<i,j>
∂W<i,j>(0)

=(1− ẏ)(H<bxc+1,byc> −H<bxc,byc>)

+ ẏ(H<bxc+1,byc+1> −H<bxc,byc+1>)
(8)

3
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Figure 3. Simplified message propagation models. (1) only includes outputs and hidden states for skeleton keypoints. (2) includes outputs
and hidden states for both skeleton keypoints and contour keypoints. (3) further adds Triplet Constraints beyond (2).

3. TRB Estimation
3.1. Training Details

In our experiments on LSP and MPII, SGD is used as
our optimizing algorithm. We set momentum to be 0.9 and
weight decay to be 1e-4. During training, the batch size is
32, while the whole training includes 250000 iterations. We
use 8e-5 as initial learning rate, and decrease it by 2/3 at
160000 iteration and 200000 iteration. In our experiments
on COCO, we use RMSprop as optimizing algorithm, with
initial learning rate 5e-4. Our batch size is 96, the whole
training includes 200000 iterations. Learning rate is de-
creased by 90% at 120000 iteration and 160000 iteration.

3.2. Additional Results for TRB Estimation

Table 2. Additional results on MPII trb.
Head Sho. Elb. Wri. Hip Knee Ank. Ske. Con. Mean

Hourglass[9] 96.3 94.5 87.9 82.3 87.1 82.3 79.5 87.7 85.0 86.0
Simple Baseline[11] Res-50 96.3 94.9 87.5 82.2 87.1 83.9 80.3 88.0 84.8 85.9
Simple Baseline[11] Res-152 96.5 95.3 88.6 82.8 88.3 85.0 81.5 88.8 86.0 87.0
HRNet-W32 [5] 96.0 94.8 90.1 85.6 85.6 82.6 80.6 88.5 85.5 86.6
HRNet-W48 [5] 96.7 95.3 90.3 86.3 89.3 83.7 81.6 89.6 87.2 88.1

Cascaded AIOI [7] 96.7 95.0 88.4 82.9 87.7 83.5 80.0 88.3 85.5 86.5
TRB-Net 97.4 95.4 89.5 85.1 89.2 85.9 81.8 89.6 86.5 87.6

Deep high-resolution network[5], which is the latest
state-of-the-art 2D skeleton keypoints estimation method
was included into our comparison. Based on imagenet
pretraining and high resolution feature learning, HRNet
achieves good results on TRB estimation, which surpasses
baseline used in this paper[7] a lot. In future, we will com-
bine the proposed knowledge transfer scheme with up to
date feature learning approach, to further improve current
state-of-the-art of TRB estimation.

3.3. Skeleton Results on COCO test-dev

We further test the performance of the 2-stack hourglass
based TRB-Net on skeleton estimation on COCO test-dev.
The results are reported in Fig.5. The knowledge transfer-
ring scheme in TRB-Net boost skeleton performance by 2.4
AP with half training data and by 1.9 AP with full train-
ing data. Note that additional dataset and multi-scale test-

AP AP50 AP75 APM APL
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Figure 5. Results on COCO test-dev. ’sub’ denotes using only
half of the data for training. The results are obtained with single-
scale testing and flipping.

ing were not used to produce this result, the best result of
hourglass based model under the same conditions on COCO
leader-board was 69.8 AP(reported by Raven-DL, with a 4-
stack hourglass network). Under our finely tuned baseline,
knowledge transfer modules in TRB-Net led to large im-
provement.

3.4. Qualitative Results

We display some qualitative results on MPII-trb valida-
tion set in Figure 6. Based on three knowledge transfer
module we proposed in TRB-Net, the semantic information
of skeleton and visual evidence of contour are combined ef-
ficiently to benefit both tasks.

4. Human shape guided image generation

For experiment on DeepFashion[8], a 2-stack hourglass
based TRB-Net trained on COCO was used to give out TRB
prediction for all images. Then, following the same exper-
iment setting in [3], we train a variational u-net for human
shape guided image generation. Comparing to the original
work, contour points in TRB are used as guidance addition-
ally. We generate several demo videos for our proposed ap-
plication — human shape editing. Frames of some videos
are displayed in Figure. 7.
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Figure 6. Qualitative Results on MPII-trb validation. The four columns denote original images, baseline prediction, TRB-Net prediction
and ground-truth respectively. Wrong predictions corrected by TRB-Net are highlighted using white circles.(Best viewed in 4x)
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Figure 7. Frames in shape editing demo videos Three different shape editing are performed to generate our demo videos. In the first
column, upper leg contour points are edited to generate stronger legs. In the second column, upper body contour point are edited to generate
stronger arms. In the third column, upper body contour point are edited to generate plump torsos.(Best viewed in 4x)
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