
A. Proofs
We begin by proving that D-optimizable functions are Lipschitz on the cube C0 as we claimed in the beginning of Sub-

section 3.2. In the remainder of the Section we restate and prove the theorems and lemmas stated in the main text.

Lemma 5. If F is D-quasi optimizable in C0, then there exists L > 0 such that.

F (x1)− F (x2) ≤ L‖x1 − x2‖,∀x1, x2 ∈ C0 (A.1)

Proof. If F (x1) ≤ F (x2) then (A.1) holds for all L ≥ 0. Now assume F (x1) > F (x2) and let y2 be the minimizer of
E(x2, ·). Then due to the differentiability of E(·, y2),

F (x1)− F (x2) ≤ E(x1, y2)− E(x2, y2) ≤ L‖x1 − x2‖

where L is the maximum of the norm of the gradient of E(·, y) over all x ∈ C0 and y ∈ Y .

Theorem 2. There exist positive constants C1, . . . , C4, such that

C1ε
−D/2 ≤ nBnB ≤ C2ε

−D. (14)

nqBnB ≤ C3ε
−D/2. (15)

Furthermore, if E has a finite number of minimizers (x∗` , y
∗
` )N`=1, and the Hessian of E(·, y∗` ) is strictly positive definite for

all `, then
nqBnB ≤ C4 log2(1/ε). (16)

Proof. Part 1. We begin with a general discussion of the complexity of Algorithm 1 in both the BnB and quasi-BnB version,
and prove the upper bound on nBnB and nqBnB simultaneously. To do so we denote

∆α(δ) = Mδα, α = 1, 2. (A.2)

We denote by nα the number of F -evaluations used by the algorithm in each case, so

n1 = nBnB, n2 = nqBnB.

For simplicity of notation we will use lbi in the first part of the proof to denote both lower bounds and quasi lower bounds
(in contrast with the qlbi notation used elsewhere). We also note that while our bounds (18),(21) include besides Mδ2 also
higher terms in δ these terms can be absorbed into Mδ2 with a larger value of M .

In the proof we will call g from Algorithm 1 the generation of the algorithm. We begin with showing that the algorithm
necessarily terminates, and bounding the final value of g which we denote by gf . First recall from Subsection 3.2 that if
Chi(xi) ∈ Lg contains a global minimum x∗, then its sub-cubes will always be added to Lg+1. Recall also that the global
lower bound lb obtained by minimizing over all lbi obtained from the cubes in Lg , is a global lower bound for F over C0. It
follows that if the algorithm does terminate, then the output x∗ is an ε-optimal solution as its difference from the minimum
F ∗ satisfies

F (x∗)− F ∗ = ub− F ∗ ≤ ub− lb ≤ ε. (A.3)

Now to bound gf note that cubes in Lg have half-edge length h(g) ≡ h02−g . The algorithm must terminate once it visits all
cubes of generation g whose edge length h(g) satisfies

∆α(
√
Dh(g)) ≤ ε. (A.4)

This is because for all cubes Chj (xj) in this generation,

ub− lbj ≤ ubj − lbj = ∆α(
√
Dhj) ≤ ε.

and by taking the minimum over j we obtain that ub− lb ≤ ε.
Some algebraic manipulation shows that (A.4) occurs when

gf = gf (ε) = d1/α log
C̄α
ε
e where C̄α = M(

√
Dh0)α (A.5)



and we use log = log2 throughout this proof. The number of F evaluations nα is bounded by the worst case scenario where
all cubes need to be divided in all generations

nα ≤
gf∑
g=0

2Dg = 2Dgf
gf∑
g=0

2−Dg ≤ 2Dgf
∞∑
g=0

2−Dg = 2Dgf
1

1− 2D
≤(A.5)

[
2D

1− 2D
C̄D/αα

]
ε−D/α.

this proves the upper bound on n1, n2.
Part 2. We now show a lower bound on nBnB. Our first step is to show that the sub-cubes of a given cube have better=larger

lower bounds. To see this let C1 = Ch1
(x1) be a cube, and let C2 = Ch2

(x2) be one of its sub-cubes. Then h2 = h1/2 and
|x1 − x2| =

√
Dh1/2. It follows that, using the notation of (A.2) with α = 1,

F (x2) ≥ F (x1)−M
√
Dh1/2 (A.6)

Now denoting by lb1 and lb2 the lower bounds computed for the cubes C1 and C2 respectively, we have

lb2 = F (x2)−M
√
Dh1/2 ≥(A.6) F (x1)−M

√
Dh1 = lb1,

and so we have lb2 ≥ lb1 as we stated.
Next note that by the quadratic bound (9) we have that for a global minimum x∗ and η =

√
ε/C,

F (x)− F (x∗) ≤ ε, for all x ∈ Bη(x∗). (A.7)

Now, let gF denote the value of gf (2ε) from (A.5), for the case α = 1. Recall that gf (2ε) is defined as the first integer for
which (A.4) holds, where ε is replaced by 2ε, and α = 1. Thus for g < gF we have that

M
√
Dh(g) > 2ε (A.8)

Let Chi
(xi) be a cube of generation g0 containing x∗, where g0 is large enough so that the diameter of the cube is smaller

than η and thus it is contained in Bη(x∗). This occurs for

g0 = dlog(C̄/
√
ε)e, where C̄ = 2h0

√
CD.

Every sub-cube Chj (xj) of Chi(xi), from any generation g0 ≤ g < gF , satisfies

lbj = F (xj)−M
√
Dhj <

(A.8) F (xj)− 2ε ≤(A.7) F (x∗)− ε. (A.9)

In particular it follows that the cube Chi
(xi), and all its sub-cubes, will be visited during the BnB search. This is because we

saw that lower bounds improve by refinement, and so by (A.9) any cube from the earlier generations g < g0 which contains
Chi

(xi), also has lower bounds which are lower that the global minimum (by at least ε) and so such a cube would not be
removed from the search..

We can now bound nBnB by the number of subcubes of Chi(xi) at the gF − 1 generation alone:

nBnB ≥ 2D(gF−1−g0) (A.10)

Now

gF − 1− g0 = −1 + dlog
C̄1

2ε
e − dlog(C̄/

√
ε)e ≥ log(C̄1/(2C̄

√
ε))− 2 = log(C̄1/(8C̄

√
ε)).

So returning to (A.10) we obtain

nBnB ≥ 2D(gf−1−g0) ≥
(
C̄1

8C̄

)D
ε−D/2.

Part 3. We now turn to prove the last part of the theorem. Let J (`) denote the set of indices k for which (x∗` , y
∗
k) is a

minimizer. Note the we always have that ` is in J`, and if k ∈ J (`) then x∗` = x∗k. Let m be half of the minimun over the
minimal eigenvalue of the hessian of E(·, y∗` ) at x∗` for all `. The assumption that E has a finite number N of minimizers
x∗` , y

∗
` , with strictly positive definite hessian, implies that m > 0, and so for small enough positive η,

F (x)− F (x∗` ) = min
k∈J (`)

E(x, y∗k)− E(x∗k, y
∗
k) ≥ m‖x− x∗`‖2, ∀1 ≤ ` ≤ N and ∀x ∈ Bη(x∗` ). (A.11)



The minimum of F on C0 \⋃iBη/2(x∗` ) is strictly larger than F ∗. Therefore there exists some g0 independent of ε, such
that all cubes of generation g0 which are not contained in one of the balls Bη(x∗` ) will be removed in the g0-th stage.

We now claim that for g ≥ g0, g-th generation cubes Chi
(xi) contained in one of the balls Bη(x∗` ) will be removed if

‖xi − x∗`‖∞ >

√
2MD

m
hi =

√
2∆∗(

√
Dhi)

m
. (A.12)

This is because

qlbj = F (xi)−∆∗(
√
Dhi) ≥(A.11) F (x∗` ) +m‖xi − x∗`‖2 −∆∗(

√
Dhi)

= ub + (F (x∗` )− ub) +m‖xi − x∗`‖2 −∆∗(
√
Dhi) ≥(∗) ub +m‖xi − x∗`‖2 − 2∆∗(

√
Dhi)

≥ ub +m‖xi − x∗`‖2∞ − 2∆∗(
√
Dhi) >

(A.12) ub

where (∗) follows from the fact that if Chi(xi) is the g-th generation cube containing x∗` , then

F (x∗` )− ub ≥ F (x∗` )− ubi = F (x∗` )− F (xi) ≥ −∆∗(
√
Dhi).

Now for g ≥ g0, the condition (A.12) is not fulfilled in at most C̄ = (
√

2MD
m + 2)D cubes surrounding each minimizer,

and so in total only NC̄ cubes can survive each generation g > g0. The important point is that this number is independent of
ε. So the total number of iterations is bounded by the sum of the total number of cubes in all generations g ≤ g0, which is
some constant indepentent of ε which we denote by b, and the constant NC̄ multiplied by the remaining number of iterations
gf − g0, that is

n2 ≤ b+ (gf − g0)NC̄ ≤ n2 ≤ b+ gfNC̄ ≤(A.5) b+NC̄(1/2 log
C2

ε
+ 1)

This bound can be replaced with a bound of the form (16) with an appropriate constant.

Theorem 3. Let δ > 0, r ∈ RD and r∗ be a global minimizer of Fbi, and assume ‖r − r∗‖ ≤ δ. Let σP , σQ denote the
Frobenius norm of the matrices whose columns are the points in P and Q respectively. Then ∆∗(δ) is given by

Fbi(r)− Fbi(r∗) ≤ ∆∗(δ) ≡
2

n
σPσQ ψ2(δ) (18)

Proof. To conclude the proof of the theorem for the case r∗ = 0 we need to show

Lemma 6. For all r ∈ RD,
‖[r]‖op ≤ ‖r‖ (A.13)

Proof. The non-zero eigenvalues λj of a skew-symmetric real matrix [r] can be written as

a1i,−a1i, a2i,−a2i, . . .

where a1 ≥ a2 . . . > 0. Therefore

‖[r]‖2op = a2
1 ≤ 1/2

∑
i

|λi|2 = 1/2‖[r]‖2F = ‖r‖2.

For the general case r∗ 6= 0, we define a change of variable p̃i = Rr∗pi and denote by Ẽbi the energy resulting by
replacing pi with p̃i in the definition of Ebi. Then for all R0, π we have

Ẽbi(R0R
T
r∗ , π) = Ebi(R0, π).

In particular r̃∗ = 0 is a minimizer of F̃bi which is defined by replacing Ebi with Ẽbi in the definition of Fbi. We claim that
there exists r1 such that

Rr1 = RrR
T
r∗ and ‖r1‖ ≤ ‖r − r∗‖ (A.14)



In the case d = 2 we can identify RrRTr∗ with ei(r−r∗) and so we can simply choose r1 = r − r∗. For d = 3 it is proven in
Lemma 3.2 in [18] that the angular distance between Rr and Rr∗ is smaller or equal to ‖r − r∗‖. As the angular distance
is invariant to multiplication by rotations this means that the angular distance between RrRTr∗ and the identity is less than
‖r − r∗‖. Since the exponential map is a radial isometry in Bπ(0) this implies the existence of r1 satisfying (A.14).

Now for every δ such that ‖r − r∗‖ ≤ δ, we using the bound from (18) for F̃ which is minimized at zero, and satisfies
‖r1 − 0‖ ≤ δ, to obtain

Fbi(r)− Fbi(r∗) = F̃bi(r1)− F̃bi(0) ≤ 2

n
ψ2(δ)σP̃σQ =

2

n
ψ2(δ)σPσQ .

Theorem 4. Let (r∗, t∗) be a minimizer of FCP, and let (r, t) ∈ Rs × Rd, and δ1, δ2 > 0 which satisfy ‖r − r∗‖ ≤
δ1and‖t− t∗‖ ≤ δ2. Let f∗ be some upper bound for the global minimum of FCP. Then

FCP(r, t)− FCP(r∗, t∗) ≤ ∆∗(δ1, δ2) (20)

where

∆∗(δ1, δ2) =
1

n

[
2ψ2(δ1)(σ2

P + σP
√
nf∗)

+ 2δ2ψ1(δ1)
∑
i

‖pi‖+ nδ2
2

]
(21)

Proof. The proof is very similar to the proof of Theorem 3. Let us first consider the case (r∗, t∗) = (0, 0), and let π∗ be the
corresponding mapping so that (Id, 0, π∗) minimizes ECP. Then

FCP(r, t)− FCP(0, 0) ≤ ECP(r, t, π∗)− ECP(0, 0, π∗)

=
1

n

n∑
i=1

[
2〈(Id −Rr)pi, qπ∗(i)〉+ 2〈Rrpi, t〉 − 2〈t, qπ∗(i)〉+ ‖t‖2

]
=(∗) 1

n

n∑
i=1

[
2

∞∑
k=2

1

k!
〈[r]kpi, qπ∗(i)〉+ 2

∞∑
k=1

1

k!
〈[r]kpi, t〉] + ‖t‖2

]

≤ 1

n

n∑
i=1

[
2

∞∑
k=2

1

k!
‖r‖k‖pi‖(‖pi‖+ ‖qπ∗(i) − pi‖) + 2

∞∑
k=1

1

k!
‖r‖k‖pi‖ ‖t‖+ ‖t‖2

]

≤ 1

n

[
2ψ2(δ1)(σ2

P + σP [
∑
i

‖qπ∗(i) − pi‖2]1/2) + 2ψ1(δ1)δ2
∑
i

‖pi‖+ nδ2
2

]

≤ 1

n

[
2ψ2(δ1)(σ2

P + σP
√
nf∗) + 2ψ1(δ1)δ2

∑
i

‖pi‖+ nδ2
2

]
Here (∗) follows from the fact that ECP(·, ·, π∗) is minimized at the origin and so the first order terms cancel out, and the
next inequalities follow from the Cauchy-Schwarz inequality and from Lemma 6.

For general (r∗, t∗), we use a change of variables p̃i = R∗pi, q̃i = qi − t∗, and denote by ẼCP and F̃CP the functions
obtained by replacing pi, qi by p̃i, q̃i in the definition of these functions. For given (r, t, π) we have

ECP(Rr, t, π) = ẼCP(RrR
T
∗ , t− t∗, π)

For r, r∗, t, t∗ satisfying ‖r − r∗‖ ≤ δ1 and ‖t − t∗‖ ≤ δ2, we choose r1 ∈ RD satisfying (A.14), and so we can applying
the theorem to F̃CP which is minimized at (0, 0) to obtain

FCP(r, t)− FCP(r∗, t∗) = F̃CP(r1, t− t∗)− F̃CP(0, 0)

≤ 1

n

[
2ψ2(δ1)(σ2

P + σP
√
nf∗) + 2ψ1(δ1)δ2

∑
i

‖pi‖+ nδ2
2

]



B. BnB for rigid closest point
In the following we explain how we construct a quasi-BnB framework for the rigid CP problem based on the BnB archi-

tecture proposed in Go-ICP [33]. Following Go-ICP, we use a nested BnB structure: We perform an “outer” BnB search
on the rotation space, wherein the upper and lower bounds are functions of the translation component t; in turn, to compute
these bounds we perform an “inner” BnB search over the variable t. Namely, for given ri, we define an upper bound for the
outer BnB by

ĒCP(ri) = min
t∈C1(0),π∈ΠCP

ECP(ri, t, π). (B.1)

To compute a quasi-lower bound for the outer BnB we note that if (r∗, t∗) minimizes FCP and r∗ ∈ Ch(ri), then by using
(21) where we set r = ri , take δ1 to be the maximal distance of a point in the cube from the center, t = t∗ and δ2 = 0 we
obtain

FCP(r∗, t∗) ≥ FCP(ri, t∗)−
2

n

(
1 +

√
f∗
σP

)
σPψ2(

√
Dh), (B.2)

and since FCP(ri, t∗) ≥ ĒCP(ri) it follows that if r∗ ∈ Ch(ri) then

FCP(r∗, t∗) ≥ ĒCP(ri)−
2

n

(
1 +

√
f∗
σP

)
σPψ2(

√
Dh). (B.3)

The RHS of the equation above gives us our quasi lower bound for the rotation quasi BnB. To compute ĒCP(ri) we compute
a BnB in translation space, where throughout the translation BnB the rotation coordinate ri is fixed. For a given translation
cube Ch(tj) an upper bound for the value of ĒCP(ri) is given by evaluation of FCP(ri, tj). If t∗ is a minimizer of FCP(ri, ·)
then a quasi-lower bound in the cube is given by

ECP(ri, t∗) ≥ ECP(ri, tj)−
dh2

n
. (B.4)

We note that this bound is similar to what we would get by setting δ1 = 0 and δ2 to be the maximal distance in the cube
from tj in (21). Although the bound does not follow directly from this equation the derivation is similar, and can be obtained
by studying the behavior of a minimizer of E(ri, ·, π∗), so we do not go into the details. Finally we note that when the
quasi-lower bounds in the outer or inner BnB is lower than zero we replace it with zero.

The rest of the architecture of the BnB is also borrowed from Go-ICP. We use best-first-search, where the cube with the
lowest lower bound is visited first. Every time the upper bound is improved, an ICP algorithm is run to improve the resolution
of the solution. For more details see [33].

C. Morphological data
The morphological data for the experiment shown in Figure 5 comes from the MorphoSource dataset. The figure shows

ten different second mandibular molars of spider monkeys (Ateles), which come from three different taxonomical groups.
More details on the data are shown in the table below.



 ID specimen # specimen taxonomy ark ID
M782-661 AMNH:M:67102 Ateles belzebuth http://n2t.net/ark:/87602/m4/M661
M783-663 AMNH:M:71787 Ateles belzebuth http://n2t.net/ark:/87602/m4/M663
M785-665 AMNH:M:76882 Ateles belzebuth http://n2t.net/ark:/87602/m4/M665
M787-666 USNM:241384 Ateles belzebuth http://n2t.net/ark:/87602/m4/M666
M788-668 USNM:406674 Ateles belzebuth http://n2t.net/ark:/87602/m4/M668
M790-669 USNM:406675 Ateles belzebuth http://n2t.net/ark:/87602/m4/M669
M791-671 MCZ:34320 Ateles geoffroyi http://n2t.net/ark:/87602/m4/M671
M793-673 MCZ:mamm:bom-5344 Ateles geoffroyi http://n2t.net/ark:/87602/m4/M673
M795-675 USNM:mammals:336204 Ateles geoffroyi http://n2t.net/ark:/87602/m4/M675
M797-677 MCZ:31759 Ateles paniscus http://n2t.net/ark:/87602/m4/M677


