Supplementary Material

1. Proof of the DCT Least Squares Approxima-
tion Theorem

Theorem 1 (DCT Least Squares Approximation Theorem).
Given a set of N samples of a signal X = {xq,...xn}, let
Y = {yo,...yn} be the DCT coefficients of X. Then, for
any 1 < m < N, the approximation

1 2 «— k(2t + 1
Pm(t) = oo + \/;Zyk cos ((;n)ﬂ> 1)
k=1

of X minimizes the least squared error

n

€m = Z(pm(l) - mi)g 2

=0

Proof. First consider that since Equation |I| represents the
Discrete Cosine Transform, which is a Linear map, we can
write rewrite it as

DYy =x 3)

where D,, is formed from the first m rows of the DCT ma-
trix, y is a row vector of the DCT coefficients, and x is a
row vector of the original samples.

To solve for the least squares solution, we use the the
normal equations, that is we solve

DDy = Dy @)

and since the DCT is an orthonormal transformation, the
rows of D,,, are orthogonal, so DmDTTn = I. Therefore

Since there is no contradiction, the least squares solution
must use the first m DCT coefficients.]

2. Proof of the DCT Mean-Variance Theorem

Theorem 2 (DCT Mean-Variance Theorem). Given a set
of samples of a signal X such that E[X] = 0, let Y be the
DCT coefficients of X. Then

Var[X] = E[Y?] (6)

Proof. Start by considering Var[X]. We can rewrite this as
Var[X] = E[X?] - E[X]? (7)

Since we are given E[X | = 0, this simplifies to
Var[X] = E[X?] ®)

Next, we express the DCT as a linear map such that X =
DY and rewrite the previous equation as

Var[X] = E[(DY)?] ©)
Squaring gives
E[(DY)? = E[(DTD)Y?] (10)
Since D is orthogonal this simplifies to
E(DTD)Y?] =E[(D™'D)Y?] =E[Y? (1)
O

3. Algorithms

We conclude by outlining in pseudocode the algorithms
for the three layer operations described in the paper. Algo-
rithm([T] gives the code for convolution explosion, Algorithm
[gives the code for the ASM ReLu approximation, and Al-
gorithm 3] gives the code for Batch Normalization.

Algorithm 1 Convolution Explosion. K is an initial filter,
p,p’ are the input and output channels, h,w are the image
height and width, s is the stride, *, denotes the discrete
convolution with stride s. J and J are constants of shape
(z,y,k, h,w) withy = h/8, x = w/8, k = 64.

function EXPLODE(K, p,p’, h, w, 5)

d; < shape(J)

Cﬁ? — (dj [0]’ dj[lj’ dj[2]7 L h, w)

J < reshape(J,dp)

C « f*s K

de (p,p/,dj[OL,dj[l],dj[Q], h/s,h/s)
C <+ reshape(C,d.)

~pxyk Thw
return Cp’hw Jm’y’k’

Algorithm 2 Approximated Spatial Masking for ReLu. F'
is a DCT domain block, ¢ is the desired maximum spatial
frequencies, IV is the block size.

function RELU(F, ¢, N)
M < ANNM(F, ¢, N)
return APPLYMASK(F, M)

function ANNM(F, ¢, N)
I «+ zeros(N,N)
fori € [0, N) do
for j € [0,N) do
for o € [0, N) do
for 8 € [0, N) do
if o + 5 < ¢ then
Iij < Iij —+ FZ]Dlajﬁ
M «+ zeros(N, N)
M[I>0]+1
return M
function APPLYMASK(F, M)

return H;)‘;B/;,j F.3M;;

Algorithm 3 Batch Normalization. F' is a batch of JPEG
blocks (dimensions NV x 64), S is the inverse quantization
matrix, m is the momentum for updating running statistics,
t is a flag that denotes training or testing mode. The param-
eters v and f3 are stored externally to the function.” is used
to denote a batch statistic and™ is used to denote a running
statistic.

function BATCHNORM(F',S,m,t)
if ¢ then

w < mean(F[:,0])
i< FI:, 0]
F[;,0] =0
Dg — FkSk
o2 mean(F? 1)
0? mean(c;5 +0%) =
fi = (1 —m) + pm
02+ o2(1 —m)+ pm
F:,0] <F— F[:,0] —

2

F+ 2=

F[:,0] + F[;,0] + 2
else

F[:,0] « F[;,0] —

F+2E

F[:,0] « F[:,0] + 8
return F

