
Supplementary Material

1. Proof of the DCT Least Squares Approxima-
tion Theorem

Theorem 1 (DCT Least Squares Approximation Theorem).
Given a set of N samples of a signal X = {x0, ...xN}, let
Y = {y0, ...yN} be the DCT coefficients of X . Then, for
any 1 ≤ m ≤ N , the approximation

pm(t) =
1√
n
yo +

√
2

n

m∑
k=1

yk cos

(
k(2t+ 1)π

2n

)
(1)

of X minimizes the least squared error

em =

n∑
i=0

(pm(i)− xi)2 (2)

Proof. First consider that since Equation 1 represents the
Discrete Cosine Transform, which is a Linear map, we can
write rewrite it as

DT
my = x (3)

where Dm is formed from the first m rows of the DCT ma-
trix, y is a row vector of the DCT coefficients, and x is a
row vector of the original samples.

To solve for the least squares solution, we use the the
normal equations, that is we solve

DmD
T
my = Dmx (4)

and since the DCT is an orthonormal transformation, the
rows of Dm are orthogonal, so DmD

T
m = I . Therefore

y = Dmx (5)

Since there is no contradiction, the least squares solution
must use the first m DCT coefficients.

2. Proof of the DCT Mean-Variance Theorem
Theorem 2 (DCT Mean-Variance Theorem). Given a set
of samples of a signal X such that E[X] = 0, let Y be the
DCT coefficients of X . Then

Var[X] = E[Y 2] (6)

Proof. Start by considering Var[X]. We can rewrite this as

Var[X] = E[X2]− E[X]2 (7)

Since we are given E[X] = 0, this simplifies to

Var[X] = E[X2] (8)

Next, we express the DCT as a linear map such that X =
DY and rewrite the previous equation as

Var[X] = E[(DY )2] (9)

Squaring gives

E[(DY )2] = E[(DTD)Y 2] (10)

Since D is orthogonal this simplifies to

E[(DTD)Y 2] = E[(D−1D)Y 2] = E[Y 2] (11)

3. Algorithms
We conclude by outlining in pseudocode the algorithms

for the three layer operations described in the paper. Algo-
rithm 1 gives the code for convolution explosion, Algorithm
2 gives the code for the ASM ReLu approximation, and Al-
gorithm 3 gives the code for Batch Normalization.

Algorithm 1 Convolution Explosion. K is an initial filter,
p, p′ are the input and output channels, h,w are the image
height and width, s is the stride, ?s denotes the discrete
convolution with stride s. J and J̃ are constants of shape
(x, y, k, h, w) with y = h/8, x = w/8, k = 64.

function EXPLODE(K, p, p′, h, w, s)
dj ← shape(J̃)
db ← (dj [0], dj [1], dj [2], 1, h, w)

Ĵ ← reshape(J̃ , db)

Ĉ ← Ĵ ?s K
dc ← (p, p′, dj [0], dj [1], dj [2], h/s, h/s)

C̃ ← reshape(Ĉ, dc)

return C̃pxykp′hwJ
hw
x′y′k′

1



Algorithm 2 Approximated Spatial Masking for ReLu. F
is a DCT domain block, φ is the desired maximum spatial
frequencies, N is the block size.

function RELU(F, φ,N )
M ← ANNM(F, φ,N )
return APPLYMASK(F,M )

function ANNM(F, φ,N )
I ← zeros(N,N)
for i ∈ [0, N) do

for j ∈ [0, N) do
for α ∈ [0, N) do

for β ∈ [0, N) do
if α+ β ≤ φ then

Iij ← Iij + FijD
αβ
ij

M ← zeros(N,N)
M [I > 0]← 1
returnM

function APPLYMASK(F,M )
return Hαβij

α′β′ FαβMij

Algorithm 3 Batch Normalization. F is a batch of JPEG
blocks (dimensions N × 64), S is the inverse quantization
matrix, m is the momentum for updating running statistics,
t is a flag that denotes training or testing mode. The param-
eters γ and β are stored externally to the function.̂ is used
to denote a batch statistic and˜ is used to denote a running
statistic.

function BATCHNORM(F ,S,m,t)
if t then

µ←mean(F [:, 0])
µ̂← F [:, 0]
F [:, 0] = 0
Dg ← FkSk

σ̂2 ←mean(F 2, 1)

σ2 ←mean(σ̂2 + µ̂2)− µ2

µ̃← µ̃(1−m) + µm

σ̃2 ← σ̃2(1−m) + µm
F [:, 0]← F [:, 0]− µ
F ← γF

σ
F [:, 0]← F [:, 0] + β

else
F [:, 0]← F [:, 0]− µ̃
F ← γF

σ̃
F [:, 0]← F [:, 0] + β

return F

2


