
Supplementary material: Equivariant Multi-
View Networks

We divide this material in “Extended experiments”,
“Proofs”, “Implementation details”, and “Visualization”.
Numbering and citations follow the main text.

A. Extended experiments
We include an ablation experiment and further results for

ModelNet, SHREC’17 large scale retrieval, comparison with
RotationNet [20], and Matterport3D scene classification.

A.1. Ablation

We run an experiment to compare effects of (1) filter
support size, (2) number of G-Conv layers, and (3) missing
views. We evaluate on rotated ModelNet40 with “Ours-60”
model as baseline that has with 9 elements in the support, 3
G-Conv layers and all 60 views.

When considering less than 60 views, we introduce view
dropout during training where a random number (between
1 and 30) of views is selected for every mini-batch. This
improves robustness to missing views. During test, a fixed
number of views is used. Table 5 shows the results. As
expected, we can see some decline in performance with
fewer layers and smaller support, which reduces the receptive
field at the last layer. Our method is shown to be robust to
missing up to 50% of the views, with noticeable drop in
performance when missing 80% or more.

In the second ablation experiment, we investigate the
performance as the assumption that the views can be as-
sociated with group elements is broken. We perturb the
camera pose for each view with randomly sampled rotations
given some standard deviation. The model is trained once
on ModelNet40 (aligned) and tested under different levels
of perturbations. Table 6 shows the results.

support layers views pretrained acc mAP

9 3 60 yes 91.00 82.61
6 3 60 yes 90.63 81.90
3 3 60 yes 89.74 80.49
9 2 60 yes 91.00 81.47
9 1 60 yes 90.88 79.59
9 3 30 yes 89.50 79.20
9 3 10 yes 88.32 74.65
9 3 5 yes 82.77 64.88
9 3 60 no 87.40 70.44

Table 5: Ablation study on rotated ModelNet40. Our best
performing model is on the top row.

std [deg] acc mAP

0 93.96 89.74
5 94.20 89.34

15 92.70 86.97
30 88.61 81.16
45 80.98 71.61

Table 6: We perturb the camera pose for each view to gradu-
ally break the assumption that they form a group. The model
is trained with no perturbations and tested under different
levels of perturbations.

A.2. SHREC’17

We show all metrics for the SHREC’17 large scale re-
trieval challenge in Table 7.

A.3. ModelNet

Since some methods show ModelNet40 results as av-
erages per class instead of the more common average per
instance, we include exteded tables with these metrics. We
also present results on rotated ModelNet10. Tables 8 and
9 shows the results for the aligned and rotated versions, re-
spectively.

A.4. Comparison with RotationNet

We provide further comparison against RotationNet [20].
While RotationNet remains SoTA on aligned ModelNet clas-
sification, our method is superior on all retrieval benchmarks.
We also outperform RotationNet on more challenging clas-
sification taks: rotated and aligned ShapeNet, and rotated
ModelNet. Table 10 shows the results.

A.5. Scene classification

We show examples of original input and our 12 overlap-
ping views in Figure 6. The complete set of results in the
same format as [2] is shown in Table 11.

B. Proofs

We demonstrate the equivariance of operations, and show
that MVCNN [33] is a special case of our method.

B.1. Equivariance of G-Conv, H-Conv, H-Corr

We demonstrate here the equivariance of the main opera-
tions used in our method: group convolution, homogeneous
space convolution and correlation. We assume a compact
group G and one of its homogeneous spaces X . Tk is the
action of k ∈ G. Let us start with G-Conv (3), where



micro macro

Method score P@N R@N F1@N mAP G@N P@N R@N F1@N mAP G@N

RotatNet [20] 67.8 81.0 80.1 79.8 77.2 86.5 60.2 63.9 59.0 58.3 65.6
ReVGG [29] 61.8 76.5 80.3 77.2 74.0 82.8 51.8 60.1 51.9 49.6 55.9
DLAN [13] 57.0 81.8 68.9 71.2 66.3 76.2 61.8 53.3 50.5 47.7 56.3
MVCNN-12 [33] 65.1 77.0 77.0 76.4 73.5 81.5 57.1 62.5 57.5 56.6 64.0
MVCNN-M-12 69.1 83.1 77.9 79.4 74.9 83.8 66.8 68.4 65.2 63.2 70.3
Ours-12 70.7 83.1 80.5 81.1 77.7 86.3 65.3 68.7 64.8 63.6 70.8
Ours-20 71.4 83.6 80.8 81.5 77.9 86.8 66.4 70.1 65.9 64.9 71.9
Ours-60 71.7 84.0 80.5 81.4 77.8 86.4 67.1 70.7 66.6 65.6 72.3
Ours-R-20 72.2 83.6 81.7 82.0 79.1 87.5 66.8 69.9 66.1 65.4 72.3

DLAN [13] 56.6 81.4 68.3 70.6 65.6 75.4 60.7 53.9 50.3 47.6 56.0
ReVGG [29] 55.7 70.5 76.9 71.9 69.6 78.3 42.4 56.3 43.4 41.8 47.9
RotatNet [20] 46.6 65.5 65.2 63.6 60.6 70.2 37.2 39.3 33.3 32.7 40.7
MVCNN-80 [33] 45.1 63.2 61.3 61.2 53.5 65.3 40.5 48.4 41.6 36.7 45.9
MVCNN-M-60 57.5 77.7 67.6 71.1 64.1 75.9 55.7 56.9 53.5 50.9 59.7
Ours-12 58.1 76.1 70.0 72.0 66.4 76.7 54.6 55.7 52.6 49.8 58.6
Ours-20 59.3 76.4 70.5 72.4 66.9 77.0 54.6 58.0 53.7 51.7 60.2
Ours-60 62.1 78.7 72.9 74.7 69.6 79.6 57.6 60.1 56.3 54.6 63.0
Ours-R-60 63.5 78.7 75.0 75.9 71.8 81.1 58.3 60.6 56.9 55.1 63.3

Table 7: SHREC’17 retrieval results. Top block: aligned dataset; bottom: rotated. Methods are ranked by the micro and macro
mAP average (namely, the “score” in the second column). We also show Precision (P), Recall (R), F-score (F1), mean average
precision (mAP) and normalized discounted cumulative gain (G), where N is the number of retrieved elements.

M40 (aligned) M10 (aligned)

acc inst acc cls mAP inst mAP cls acc inst acc cls mAP inst mAP cls
Ours-12 94.51 92.49 91.82 88.28 96.33 96.00 95.30 95.00
Ours-20 94.69 92.56 91.42 87.71 97.46 97.34 95.74 95.58
Ours-60 94.36 92.40 91.04 87.30 96.80 96.58 95.25 95.01
Ours-R-20 94.44 92.49 93.19 89.65 97.02 96.97 96.59 96.46

Table 8: Aligned ModelNet results. We include classification accuracy and retrieval mAP per class (cls) and per instance (inst).

f, h : G 7→ R:

(Tkf ∗ h)(y) =

∫
g∈G

f(k−1g)h(g−1y) dg

=

∫
g∈G

f(l)h((kl)−1y) dl

=

∫
g∈G

f(l)h((l−1k−1y) dl

= (f ∗ h)(k−1y)

= Tk(f ∗ h)(y).

For H-Conv (4), where f, h : X 7→ R, we have:

(Tkf ∗ h)(y) =

∫
g∈G

f(k−1gη)h(g−1y) dg

=

∫
g∈G

f(lη)h((kl)−1y) dl

=

∫
g∈G

f(lη)h(l−1k−1y) dl

= (f ∗ h)(k−1y)

= Tk(f ∗ h)(y).



M40 (rotated) M10 (rotated)

acc inst acc cls mAP inst cls mAP cls acc inst acc cls mAP inst mAP cls
Ours-12 88.50 85.77 79.58 74.64 91.89 91.54 86.93 86.08
Ours-20 89.98 87.65 80.73 75.65 92.60 92.35 87.27 86.65
Ours-60 91.00 89.24 82.61 78.02 92.83 92.80 88.47 88.02
Ours-R-20 91.08 88.94 88.57 84.37 93.05 93.08 92.07 91.99

Table 9: Rotated ModelNet results. We include ModelNet10 and classification accuracy and retrieval mAP per class (cls) and
per instance (inst).

Figure 6: Top: original input from MatterPort3D [2] scene classification task. Bottom: our set of 12 overlapping views.

M40 (al) S17 (al) S17 (rot)

acc mAP acc mAP acc mAP

RotNet 97.37 93.00 85.39 67.8 77.37 46.6
Ours 94.67 93.56 89.15 72.2 85.93 63.5

Table 10: Classification accuracy (acc) and retrieval (mAP)
comparison against RotationNet. Results for aligned (al)
and rotated (rot) datasets, and for the SHREC’17 split of
ShapeNet (S17). The mAP for SHREC’17 is the average
between micro and macro (score).

Finally, for H-Corr (5), where f, h : X 7→ R, we have:

(Tkf ? h)(g) =

∫
x∈X

f(k−1gx)h(x) dx

= (f ? h)(k−1g)

= T
′

k (f ? h)(y).

Note that, in this case, T ′

k is not equal Tk because inputs and
outputs are in different spaces.

B.2. MVCNN is a special case

Now we show that our model can replicate MVCNN [33]
by fixing the filters hij(g), where i, j denote the output and
input channel and g denotes the element in group:

hij(g) =

{
1 i = j and g = e

0 else
(10)

Combining with group correlation (the result can also be
achieved by group convolution), we show that



avg. office lounge family room entryway dining room living room stairs kitchen porch bathroom bedroom hallway

single [2] 33.3 20.3 21.7 16.7 1.8 20.4 27.6 49.5 52.1 57.4 44.0 43.7 44.7
pano [2] 41.0 26.5 15.4 11.4 3.1 27.7 34.0 60.6 55.6 62.7 65.4 62.9 66.6
MVCNN-M-12 51.9 18.0 16.4 23.8 8.6 46.7 37.1 84.1 73.3 81.0 78.2 81.7 73.8
Ours-12 53.8 27.9 16.4 33.3 11.4 51.1 41.3 80.4 75.8 79.0 72.5 82.9 73.5

Table 11: Matterport3D panoramic scene classification extended results.

(f ? h)i(k) =

c1∑
j=1

∑
g∈G

fj(kg)hij(g)

=

{
fi(k) 1 ≤ i ≤ ci

0 i > ci
,

where ci is the number of input channels. In this way, the
input is “copied” into the output and the our model produces
the exact same descriptor as an MVCNN with late pooling
after the last layer.

C. Implementation details
We include details about our triplet loss implementation

and about our procedure for visualization of discrete rotation
groups and their homogeneous spaces.

C.1. Triplet loss

We implement a simple triplet loss. During training, we
keep a set containing the descriptors for the last seen instance
of each class, Z = {zi}, where i is the class label. For each
entry in the mini-batch, let c be the class and z its descriptor.
We take the descriptor in Z of the same class as a positive
example (zc), and chose the hardest between all the others
in the set as the negative: zn = argminzi∈Z, i6=c(d(zi, z)),
where d is a distance function. The contribution of this entry
to the loss is then,

L = max(d(z, zc)− d(z, zn) + α, 0), (11)

where α is a margin. We use α = 0.2 and d is the cosine
distance. Note that this method is only used in the “Ours-R”
variations of our method.

C.2. Feature map visualization

Our features are functions on a subgroup of the rotation
group SO(3). Since SO(3) is a 3-manifold (which can
be embedded in R5), visualization is challenging. As we
operate on the discrete subgroup of 60 rotations, we choose
a solid with icosahedral symmetry and 60 faces as a proxy
for visualization – the pentakis dodecahedron, which is the
dual of the truncated icosahedron (the “soccer ball” with 60
vertices).

We associate the color of each face with the feature vec-
tor at that element of the group. Since the vector is high-
dimensional (usually 256 or 512-D), we use PCA over all
feature vectors in a layer (or groups of channels in a layer)
and project it into the 3 principal components that can be
associated with an RGB value. The same idea is applied to
visualize functions on the homogeneous spaces, where the
dodecahedron and icosahedron are used as proxies.

D. Visualization

We visualize the icosahedral group properties and include
more examples of our equivariant feature maps.

D.1. Icosahedral group

The icosahedral group I is the group of symmetries of
the icosahedron, which consists of 60 rotations, as visualized
in Figure 8. We show how the equivariance manifests as
permutation when rendering multiple views of an object
according to the group structure in Figure 7. Figure 9 shows
the Cayley Table for I; note that the color assigned for each
group element matches the color in Figure 7.

Figure 9: Cayley table for the icosahedral group I. We can
see that I is non-abelian, since the table is not symmetric.



Figure 7: Equivariance of view configurations to I. The views on the left and right are obtained from 3D shapes separated by
a 72 deg rotation in the discrete group. We mark corresponding views before and after rotation with same border color. Notice
the five first views in the second row – the axis of rotation is aligned with their optical axis; the rotation effect is a shift right of
one position for these views. It is clear that when g ∈ I is applied to the object, the views are correspondingly permuted in the
order given by the Cayley table, showing that the mapping from 3D shape to view set is equivariant.

Figure 8: The 60 rotations of the icosahedral group I. We consider g1 the identity, highlight one edge, and show how each
gi ∈ I transforms the highlighted edge.

D.2. Feature maps

We visualize more examples of our equivariant feature
maps in Figures 10, 11, 12. Each figure shows 8 different
input rotations, the first 5 are from a subgroup of rotations
around one axis with 72 deg spacing, the other 3 are from
other subgroup with 120 deg spacing. We show the axis of
rotation in red. The first column is a view of the input, the
second is the initial representation on the group or H-space,
and the other 3 are features on each G-CNN layer.

Our method is equivariant to the 60-element discrete rota-
tion group even with only 12 or 20 input views. In Figure 10
we take only 12 input views, giving initial features on the
H-space represented by faces of the dodecahedron. Note that
the 5 first rotations in this case are in-plane for the views
corresponding to the axis of rotation. Due to our procedure
described in Section 4.3, this gives an invariant descrip-
tor which can be visualized as the face with constant color.

Similarly, in Figure 11, we take 20 views and the invariant
descriptor can be seen in the last 3 rotations.

Equivariance is easily visualized on faces neighboring the
axis of rotation. For the dodecahedron, we can see cycles
of 5 when the axis is on one face and cycles of 3 when the
axis is on one vertex. For the icosahedron, we can see cycles
of 3 when the axis is on one face and cycles of 5 when the
axis is on one vertex. For the pentakis dodecahedron (Figure
12), we can see groups of 5 cells that shift one position when
rotation is of 72 deg and groups of 6 cells that shift two
positions when rotation is of 120 deg.



Figure 10: Feature maps with 12 input views. See
animation12.gif for animated version.

Figure 11: Feature maps with 20 input views. See
animation20.gif for animated version.



Figure 12: Feature maps with 60 input views. See
animation60.gif for animated version.


