
What Would You Expect? Anticipating Egocentric Actions With
Rolling-Unrolling LSTMs and Modality Attention

(Supplementary Material)

Antonino Furnari Giovanni Maria Farinella
University of Catania - Department of Mathematics and Computer Science
http://iplab.dmi.unict.it/fpv/ - {furnari,gfarinella}@dmi.unict.it

This document is intended for the convenience of the reader
and contains supplementary material not included in the
submitted paper due to space limits. Specifically, Section 1
reports details on implementation and training procedure of
the proposed method. Section 2 reports details on imple-
mentation and training of the compared methods. Section 3
reports the full set of anticipation and recognition results
on EPIC-Kitchens, including precision and recall. We also
report related to the compared methods on EGTEA Gaze+
for action recognition. Section 4 reports screenshots of the
EPIC-Kitchens egocentric action anticipation leaderboard
at end of the competition. Section 5 reports additional qual-
itative examples. The reader is also referred to the videos
included in this supplementary material for qualitative as-
sessment of the proposed method.

1. Implementation Details and Training Proce-
dure of the Proposed Method

This section reports the implementation and training de-
tails of both the proposed and compared methods. A dia-
gram of our architecture is reported in Figure 1 for the con-
venience of the reader. The reader is referred to the paper
for a description of the architecture.

1.1. Architectural Details of RU-LSTM and MATT

We use a Batch Normalized Inception CNN [9] (BNIn-
ception) in the spatial and flow branches and consider the
1024-dimensional vectors produced by the last global aver-
age pooling layer of the network as output representations.
Optical flows are extracted using the TVL1 algorithm [20].
Specifically, we use the pre-computed optical flows pro-
vided by the authors in the case of EPIC-Kitchens (see
http://EPIC-Kitchens.github.io/) and com-
pute optical flows on EGTEA Gaze+ using the code pro-
vided in https://github.com/feichtenhofer/
gpu_flow with default parameters. At test time, the
CNNs are fed with input images and optical flows resized
to 456× 256 pixels. Note that, due to global average pool-

ing, the output of the BNInception CNN will be a 1024 fea-
ture vector regardless size of the input image. We found
this setting leading to better performance as compared to
extracting a 224 × 224 crop from the center of the image.
For the object branch, we use a Faster R-CNN object detec-
tor [6] with a ResNet-101 backbone [8], as implemented
in [7]. Both the Rolling LSTM (R-LSTM) and the Un-
rolling LSTM (U-LSTM) contain a single layer with 1024
hidden units. Dropout with p = 0.8 is applied to the input
of each LSTM and to the input of the final fully connected
layer used to obtain class scores. The Modality ATTention
network (MATT) is a feed-forward network with three fully
connected layers containing respectively h/4, h/8 and 3
hidden units, where h = 6144 is the dimension of the in-
put to the attention network (i.e., the concatenation of the
hidden and cell states of 1024 units each related to the three
R-LSTMs). Dropout with p = 0.8 is applied to the input of
the second and third layers of the attention network to avoid
over-fitting. ReLU activation function are used within the
attention network.

1.2. Training Procedure of RU-LSTM and MATT

While the proposed architecture could be in principle
trained in an end-to-end fashion, we found it extremely
challenging to avoid over-fitting during end-to-end training.
This is mainly due to the indirect relationship between in-
put video and future actions. Indeed, differently from action
recognition, where the objects and actions to be recognized
are present or take place in the input video, in the case of
action anticipation, the system should be able to anticipate
objects and actions which do not always appear in the input
video, which makes it hard to learn good representations
end-to-end. To avoid over-fitting, the proposed architec-
ture is trained as follows. First, we independently train the
spatial and motion CNNs for the task of egocentric action
recognition within the framework of TSN [19]. Specifically,
we set the number of segments to 3 and train the TSN mod-
els with Stochastic Gradient Descent (SGD) using standard

http://EPIC-Kitchens.github.io/
https://github.com/feichtenhofer/gpu_flow
https://github.com/feichtenhofer/gpu_flow

R-LSTM U-LSTM U-LSTM U-LSTM
𝑠1,1

(𝜏𝑎 = 0.75𝑠)

𝑉1

R-LSTM U-LSTM U-LSTM U-LSTM
𝑠2,1

(𝜏𝑎 = 0.75𝑠)

×

×
+

𝑠1
(𝜏𝑎 = 0.75𝑠)

𝑤1,1

𝑤2,1
S

Modality Attention
Network (MATT)

𝑤1,𝑡

𝑤2,𝑡
S SoftMaxS

𝑡 = 1

L

L

Message passing

Linear transformationL𝑉𝑡 Input video snippets

R-LSTM U-LSTM U-LSTM
𝑠1,2

(𝜏𝑎 = 0.5𝑠)

𝑉2

R-LSTM U-LSTM U-LSTM
𝑠2,2

(𝜏𝑎 = 0.5𝑠)

×

×
+

𝑠2
(𝜏𝑎 = 0.5𝑠)

𝑤1,2

𝑤2,2
S

𝑡 = 2

L

L

R-LSTM U-LSTM
𝑠1,3

(𝜏𝑎 = 0.25𝑠)

𝑉3

R-LSTM U-LSTM
𝑠2,3

(𝜏𝑎 = 0.25𝑠)

×

×
+

𝑠3
(𝜏𝑎 = 0.25𝑠)

𝑤1,3

𝑤2,3
S

𝑡 = 3

L

L

Figure 1. Example of the proposed architecture with M = 2 modalities. In our experiments, we use three modalities: RGB, Flow and OBJ.
Modules belonging to different branches are illustrated using different color shades.

cross entropy for 160 epochs with an initial learning rate
equal to 0.001, which is decreased by a factor of 10 after
80 epochs. We use a mini-batch size of 64 samples and
train the models on a single Titan X. For all other parame-
ters, we use the values recommended in [19]. We train the
object detector to recognize the 352 object classes of the
EPIC-Kitchens dataset. We use the same object detector
trained on EPIC-Kitchens when performing experiments on
EGTEA Gaze+, as the latter dataset does not contain object
bounding box annotations. This training procedure allows
to learn the parameters θ1, θ2 and θ3 of the representation
functions related to the three modalities (i.e., RGB, Flow,
OBJ). After this procedure, these parameters are fixed and
they are no more optimized. For efficiency, we pre-compute
representations over the whole dataset.

Each branch of the RU-LSTM is training with SGD us-
ing the cross entropy loss with a fixed learning rate equal
to 0.01 and momentum equal to 0.9. Each branch is first
pre-trained with Sequence Completion Pre-training (SCP).
Specifically, appearance and motion branches are trained
for 100 epochs, whereas the object branch is trained for 200

epochs. Branches are then fine-tuned for the action antici-
pation task. Once each branch has been trained, the com-
plete architecture with three branches is assembled to form
a three-branch network and the model is further fine-tuned
for 100 epochs using cross entropy and the same learning
parameters. In Figure 1 an example of a two-branches ar-
chitecture is shown.

In the case of early action recognition, each branch is
trained for 200 epochs (both SCP and main task) with a
fixed learning rate equal to 0.01 and momentum equal to
0.9.

Note that, in order to improve performances, we apply
early stopping at each training stage. This is done by choos-
ing the iterations of the intermediate and final models which
obtain the best Top-5 action anticipation accuracy for the
anticipation time τa = 1s on the validation set. In the case
of early action recognition, we choose the epoch obtain-
ing the best average Top-1 action accuracy across observa-
tion rates. The same early stopping strategy is applied to all
the methods for fair comparison. The proposed RU-LSTM
architecture has been implemented using the PyTorch li-

brary [14]. The code will be provided upon publication,
together with all details and data useful to replicate the re-
sults.

1.2.1 Note on End-To-End Training

We chose to fix the feature extractors in our work as we ex-
perienced over-fitting when training the model end-to-end.
Specifically, we tried the following: (1) Training the RGB
branch end-to-end from scratch (except the CNN, which is
pre-trained on Imagenet), (2) Pre-training the CNN on the
action recognition task with TSN, then training the RGB
branch end-to-end, (3) Training the RGB branch using fixed
representations as described in the paper, then fine-tuning
the CNN + RU-LSTM model end-to-end. In our experi-
ments, (1) and (2) led to poor performance already at the
sequence-completion stage, while (3) did not improve per-
formance. Our insight is that the indirect relationship be-
tween the observed scene and the action yet to take place
can make learning representations end-to-end much more
difficult than in the case of recognition. For instance, when
anticipating the action “take cup”, the object “cup” may or
may not be present in the observed video segment, which
makes unclear what visual features the CNN should extract.

1.3. Inference At a Fixed Anticipation Time

Our model makes multiple anticipations at time-steps
7− 14. Also, since the predictions are updated as the video
is processed and more evidence is acquired, such predic-
tions may indeed be inconsistent (with anticipations per-
formed closer to the beginning of the action being more
likely to be correct). However, it should be noted that each
prediction is deemed to be specific to a given anticipation
time. For instance, at time-step 11, the model tries to an-
ticipate actions happening in 1s. Therefore, the proposed
approach can be used to anticipate actions at a fixed an-
ticipation time by processing the buffered video up to the
related time-step, discarding all other predictions. E.g., if
the anticipation time is set to τa = 1s, the model should
process the last 11 time-steps.

1.4. Choice of Parameters α, Senc and Sant.

In this work, we set α = 0.25s and Sant = 8 to general-
ize the settings of the EPIC-Kitchens anticipation challenge.
Indeed, in these settings, we can anticipate actions up to 2s
in advance (8 × 0.25s), while still being able to produce
anticipations at anticipation time τa = 1s (4× 0.25s) as re-
quired for the challenge. We investigated the effect of Senc

when we fix α = 0.25s and Sdec = 8. We noted that the
choice of Senc affects performance lightly and hence chose
Senc = 6 to maximize action anticipation performance for
anticipation time τa = 1s.

2. Implementation Details of the Compared
Methods

Since no official public implementation is available for
the compared methods, we performed experiments using
our own implementations. In this section, we report the im-
plementation details of each of the compared method.

2.1. Deep Multimodal Regressor (DMR)

We implement the Deep Multimodal Regressor proposed
in [18] setting the number of multi-modal branches with in-
terleaved units to k = 3. For fair comparisons, we sub-
stituted the AlexNet backbone originally considered in [18]
with a BNInception CNN pre-trained on ImageNet. The
CNN is trained to anticipate future representations extracted
using BNInception pre-trained on ImageNet using the pro-
cedure proposed by the authors. Specifically, we perform
mode update every epoch. Since training an SVM with
large number of classes is challenging (in our settings, we
have 2, 513 different action classes), we substituted the
SVM with a Multi Layer Perceptron (MLP) with 1024 hid-
den units and dropout with p = 0.8 applied to the input
of the first and second layer. To comply with the pipeline
proposed in [18], we pre-train the model on our training
split of EPIC-Kitchens in an unsupervised fashion and train
the MLP separately on representations pre-extracted from
the training set using the optimal modes found at train-
ing time. As a result, during the training of the MLP, the
weights of the CNN are not optimized. The DMR archi-
tecture is trained with Stochastic Gradient Descent using a
fixed learning rate equal to 0.1 and a momentum equal to
0.9. The network is trained for several epochs until the val-
idation loss saturates. Note that training the CNN on the
EPIC-Kitchens dataset takes several days on a single Titan
X GPU using our implementation. After training, we ap-
ply early stopping by selecting the iteration with the lowest
validation loss. The MLP is then trained with Stochastic
Gradient Descent with fixed learning rate equal to 0.01 and
momentum equal to 0.9. Early stopping is applied also in
this case considering the iteration of the MLP achieving the
highest Top-5 action accuracy on the validation set.

2.2. Anticipation TSN (ATSN)

We implement this model considering the TSN archi-
tecture used to pre-train the CNNs employed in the RGB
and Flow branches of our architecture. We modify the net-
work to output verb and noun scores and train it summing
the cross entropy losses applied independently to verbs and
nouns as specified in [2]. At test time, we obtain action
probabilities by assuming independence of verbs and nouns
as follows: p(a = (v, n)|x) = p(v|x) · p(n|x), where
a = (v, n) is an action involving verb v and noun n, x is
the input sample, whereas p(v|x) and p(n|x) are the proba-

bilities computed directly by the network.

2.3. ATSN + VNMCE Loss (MCE)

This method is implemented training the TSN architec-
ture used for ATSN with the Verb-Noun Marginal Cross
Entropy Loss proposed in [3]. We used the official
code provided by the authors (https://github.com/
fpv-iplab/action-anticipation-losses/).

2.4. Encoder-Decoder LSTM (ED)

We implement this model following the details specified
in [4]. For fair comparison with respect to the proposed
method, the model takes RGB and Flow features obtained
using the representation functions as input for the RGB and
Flow modalities used in our RU architecture. Differently
from [4], we do not include a reinforcement learning term
in the loss as our aim is not to distinguish the action from
the background as early as possible as proposed in [4]. The
hidden state of the LSTMs is set to 2048 units. The model
encodes representations for 20 steps, while decoding is car-
ried out for 10 steps at a step-size of 0.25s. The architec-
ture is trained on top of pre-extracted representations for
100 epochs with the Adam optimizer and a learning rate of
0.001.

2.5. Feedback-Network LSTM (FN)

The method proposed in [5] has been implemented con-
sidering the most performing architecture investigated by
the authors, which comprises the “optional” LSTM layer
and performs fusion by concatenation. The network uses
our proposed video processing strategy. For fair compari-
son, we implement the network as a two-stream architec-
ture with two branches processing independently RGB and
Flow features. Final predictions are obtained with late fu-
sion (equal weights for the two modalities). We use the
representation functions of our architecture to obtain RGB
and Flow features. The model has hidden layers of 1024
units, which in our experiments leaded to improved results
with respect to the 128 features proposed by the authors [5].
The model is trained using the same parameters used in the
proposed architecture.

2.6. RL & EL

These two methods are implemented considering a sin-
gle LSTM with the same parameters of our Rolling LSTM.
Similarly to FN, the models are trained as two-stream mod-
els with late fusion used to obtain final predictions. The
input RGB and Flow features are computed using the rep-
resentation functions considered in our architecture. The
models are trained with the same parameters used in the
proposed architecture. RL is trained using the ranking
loss on the detection score proposed in [13], whereas EL

is trained using the exponential anticipation loss proposed
in [10].

3. Additional Results
This section reports the full set of anticipation and recog-

nition results on EPIC-Kitchens, including precision and re-
call, as well as the full table of comparisons of the proposed
method on EGTEA Gaze+ for action recognition.

Table 1 compares the proposed method with respect to
the competitors according to the full set of measures pro-
posed along with the egocentric action anticipation chal-
lenge [2], including precision and recall (which could not
be included in the paper due to space limits). The proposed
approach outperforms all competitors also according to pre-
cision and recall on S1 and S2, except for average verb pre-
cision, where it is outperform by the two-stream CNN. Note
that, coherently with Top-1 and Top-5 accuracy, the pro-
posed method achieves large gains for noun precision and
recall. Also note the small drop in performance between
Top-1 noun accuracy and average noun recall on S1 (from
22.78% to 19.81%), which highlights balanced noun pre-
dictions.

Table 2 compares the proposed method with respect to
the competitors according to the full set of measures pro-
posed with the egocentric action recognition challenge [2].
Similarly to Table 1, this includes precision and recall,
which could not be included in the paper due to space lim-
its. Similarly to what observed in the case of top-1 and top-5
accuracy, the proposed method outperforms the competitors
according to most of the considered measures, despite not
being explicitly designed to tackle the recognition task (i.e.,
our architecture was designed for the egocentric action an-
ticipation task.)

Table 3 compares the proposed RU method against the
state-of-the-art when tackling the task of egocentric action
recognition on EGTEA Gaze+. It is worth noting that the
proposed method outperforms many recent approaches by
significant margins. It is also comparable with other state-
of-the-art approaches such as the ones proposed in [16, 17].
Again, note that our architecture generalizes despite not be-
ing explicitly designed for the recognition task.

4. EPIC-Kitchens Egocentric Action Anticipa-
tion Challenge Leaderboards

The proposed RULSTM approach has been used to par-
ticipate in the EPIC-Kitchens egocentric action anticipa-
tion competition. Specifically, we considered an ensem-
ble model including features extracted using a BNIncep-
tion and a ResNet-50 CNN trained for action recognition.
Figure 2 reports a screenshot of the EPIC-Kitchens egocen-
tric action anticipation challenge at the end of the compe-
tition. The screenshot has been acquired from https:

https://github.com/fpv-iplab/action-anticipation-losses/
https://github.com/fpv-iplab/action-anticipation-losses/
https://epic-kitchens.github.io/

Top-1 Accuracy% Top-5 Accuracy% Avg Class Precision% Avg Class Recall%
VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

S1

2SCNN (Fusion) [2] 29.76 15.15 04.32 76.03 38.56 15.21 13.76 17.19 02.48 07.32 10.72 01.81
TSN (Fusion) [2] 31.81 16.22 06.00 76.56 42.15 28.21 23.91 19.13 03.13 09.33 11.93 02.39
VNMCE [3] 27.92 16.09 10.76 73.59 39.32 25.28 23.43 17.53 06.05 14.79 11.65 05.11
RU-LSTM 33.04 22.78 14.39 79.55 50.95 33.73 25.50 24.12 07.37 15.73 19.81 07.66
Imp. wrt best +1.23 +6.56 +3.63 +2.99 +8.80 +5.52 +1.59 +4.99 +1.32 +0.94 +7.88 +2.55

S2

2SCNN (Fusion) [2] 25.23 09.97 02.29 68.66 27.38 09.35 16.37 06.98 00.85 05.80 06.37 01.14
TSN (Fusion) [2] 25.30 10.41 02.39 68.32 29.50 06.63 07.63 08.79 00.80 06.06 06.74 01.07
VNMCE [3] 21.27 09.90 05.57 63.33 25.50 15.71 10.02 06.88 01.99 07.68 06.61 02.39
RU-LSTM 27.01 15.19 08.16 69.55 34.38 21.10 13.69 09.87 03.64 09.21 11.97 04.83
Imp. wrt best +1.71 +4.78 +2.59 +0.89 +4.88 +5.39 -2.68 +1.08 +1.65 +1.53 +5.23 +2.44

Table 1. Egocentric action anticipation results on the EPIC-Kitchens test set.

Top-1 Accuracy% Top-5 Accuracy% Avg Class Precision% Avg Class Recall%
VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

S1

2SCNN (Fusion) [2] 42.16 29.14 13.23 80.58 53.70 30.36 29.39 30.73 05.53 14.83 21.10 04.46
TSN (Fusion) [2] 48.23 36.71 20.54 84.09 62.32 39.79 47.26 35.42 10.46 22.33 30.53 08.83
LSTA [16] 59.55 38.35 30.33 85.77 61.49 49.97 42.72 36.19 14.46 38.12 36.19 17.76
VNMCE [3] 54.22 38.85 29.00 85.22 61.80 49.62 53.87 38.18 18.22 35.88 32.27 16.56
RU-LSTM 56.93 43.05 33.06 85.68 67.12 55.32 50.42 39.84 18.91 37.82 38.11 19.12
Imp. -2.62 +4.20 +2.73 -0.09 +4.80 +5.35 -3.45 +1.66 +0.69 -0.30 +1.92 +1.36

S2

2SCNN (Fusion) [2] 36.16 18.03 07.31 71.97 38.41 19.49 18.11 15.31 02.86 10.52 12.55 02.69
TSN (Fusion) [2] 39.40 22.70 10.89 74.29 45.72 25.26 22.54 15.33 05.60 13.06 17.52 05.81
LSTA [16] 47.32 22.16 16.63 77.02 43.15 30.93 31.57 17.91 08.97 26.17 17.80 11.92
VNMCE [3] 40.90 23.46 16.39 72.11 43.05 31.34 26.62 16.83 07.10 15.56 17.70 10.17
RU-LSTM 43.67 26.77 19.49 73.30 48.28 37.15 23.40 20.82 09.72 18.41 21.59 13.33
Imp. -3.65 +3.31 +2.86 -3.72 +2.56 +5.81 -8.17 +2.91 +0.75 -7.76 +3.79 +1.41

Table 2. Egocentric action recognition results on the EPIC-Kitchens test set.

Method Acc.% Imp.
Lit et al. [12] 46.50 +13.7
Li et al. [11] 53.30 +6.90
Two stream [15] 41.84 +18.7
I3D [1] 51.68 +8.52
TSN [19] 55.93 +4.27
eleGAtt [21] 57.01 +3.19
ego-rnn [17] 60.76 -0.56
LSTA [16] 61.86 -1.66
RU 60.20 /

Table 3. Recognition results on EGTEA Gaze+.

//epic-kitchens.github.io/ on the 1st of Au-
gust, 2019. Note that our submission (team name “DMI-
UNICT”) is ranked first on both S1 and S2.

5. Additional Qualitative Examples
Figure 3 reports qualitative results of three additional

success action anticipation examples. For improved clarity,
we report frames with and without optical flows for each
example. In the top example, MATT assigns a small weight
to the object branch as the contextual appearance features
(i.e., RGB) are already enough to reliably anticipate the next
actions. In the middle example object detection is funda-

mental to correctly anticipate “put down spoon”, as soon as
the object is detected. The bottom example shows a com-
plex scene with many objects. The ability to correctly rec-
ognize objects is fundamental to anticipate certain actions
(i.e., “wash spoon”). The algorithm can anticipate “wash”
well in advance. As soon as the spoon is detected (τa = 2s),
“wash spoon” is correctly anticipated. Note that, even if the
spoon is not correctly detected at time τa = 0.5s, “wash
spoon” is still correctly anticipated.

Figure 4 reports three failure examples. In the top exam-
ple, the model fails to predict “adjust chair”, probably due
to the inability of the object detector to identify the chair.
Note that, when the object “pan” on the table is detected,
“take curry” is wrongly anticipated. In the middle exam-
ple, the algorithm successfully detects the fridge and tries
to anticipate “close fridge” and some actions involving the
“take” action, with wrong objects. This is probably due to
the inability of the detector to detect “mozzarella”, which is
not yet appearing in the scene. In the bottom example, the
method tries to anticipate actions involving “jar”, as soon as
“jar” is detected. This misleads the algorithm as the correct
action is “pour coffee”.

The reader is referred to the videos in the supplemen-
tary material for additional success and failure qualitative
examples. The supplementary material also reports qualita-

https://epic-kitchens.github.io/
https://epic-kitchens.github.io/
https://epic-kitchens.github.io/
https://epic-kitchens.github.io/
https://epic-kitchens.github.io/

Figure 2. Screenshots of the EPIC-Kitchens Egocentric Action Anticipation Challenge Leaderboards at the end of the competition, acquired
from https://epic-kitchens.github.io/ on the 1st of August, 2019. The team name of the proposed method is “DMI-
UNICT”.

tive examples of the proposed method when applied to the
problem of early action recognition.

Acknowledgment
This research is supported by Piano della Ricerca 2016-

2018, linea di Intervento 2 of DMI, University of Catania.

https://epic-kitchens.github.io/

Ground truth action: close fridge RGB Flow OBJ

48

29

23

close fridge; get salad
take mozzarella; take onion

a = 2.0s

48

30

22

close fridge; take bread
get salad; take mozzarella

a = 1.5s

49

31

20

close fridge; take bread
get salad; take mozzarella

a = 1.0s

49

31

20

close fridge; take bread
get salad; open fridge

a = 0.5s

Ground truth action: close fridge RGB Flow OBJ

48

29

23

close fridge; get salad
take mozzarella; take onion

a = 2.0s

48

30

22

close fridge; take bread
get salad; take mozzarella

a = 1.5s

49

31

20

close fridge; take bread
get salad; take mozzarella

a = 1.0s

49

31

20

close fridge; take bread
get salad; open fridge

a = 0.5s

Ground truth action: put down spoon RGB Flow OBJ

43

23

34

put down spoon; put lid
put bowl; take lid

a = 2.0s

43

23

34

put down spoon; put bowl
open drawer; take sponge

a = 1.5s

43

23

34

put down spoon; put bowl
close tap; put down sponge

a = 1.0s

43

23

34

put down spoon; close tap
put bowl; turn off tap

a = 0.5s

Ground truth action: put down spoon RGB Flow OBJ

43

23

34

put down spoon; put lid
put bowl; take lid

a = 2.0s

43

23

34

put down spoon; put bowl
open drawer; take sponge

a = 1.5s

43

23

34

put down spoon; put bowl
close tap; put down sponge

a = 1.0s

43

23

34

put down spoon; close tap
put bowl; turn off tap

a = 0.5s

Ground truth action: wash spoon RGB Flow OBJ

44

22

34

put lid; put pot : coffee
take lid; wash pot

a = 2.0s

43

23

34

put lid; put pot : coffee
take lid; wash pot

a = 1.5s

43

23

34

take spoon; wash spoon
put lid; put down spoon

a = 1.0s

44

22

34

wash spoon; take spoon
put lid; open tap

a = 0.5s

Ground truth action: wash spoon RGB Flow OBJ

44

22

34

put lid; put pot : coffee
take lid; wash pot

a = 2.0s

43

23

34

put lid; put pot : coffee
take lid; wash pot

a = 1.5s

43

23

34

take spoon; wash spoon
put lid; put down spoon

a = 1.0s

44

22

34

wash spoon; take spoon
put lid; open tap

a = 0.5s

Figure 3. Success action anticipation example qualitative results (best seen on screen).

References
[1] J. Carreira and A. Zisserman. Quo vadis, action recognition?

a new model and the kinetics dataset. In Computer Vision
and Pattern Recognition, pages 4724–4733, 2017.

[2] D. Damen, H. Doughty, G. M. Farinella, S. Fidler,
A. Furnari, E. Kazakos, D. Moltisanti, J. Munro, T. Perrett,
W. Price, and M. Wray. Scaling egocentric vision: The epic-
kitchens dataset. In European Conference on Computer Vi-

sion, pages 720–736, 2018.

[3] A. Furnari, S. Battiato, and G. M. Farinella. Leveraging un-
certainty to rethink loss functions and evaluation measures
for egocentric action anticipation. In European Conference
on Computer Vision Workshops, 2018.

[4] Y. Gao, Z. Yang, and R. Nevatia. RED: Reinforced encoder-
decoder networks for action anticipation. British Machine
Vision Conference, 2017.

Ground truth action: adjust chair RGB Flow OBJ

53

27

20

close door; close fridge
dry rack; take coffee

a = 2.0s

55

28

17

dry rack; enter kitchen
close door; close fridge

a = 1.5s

57

26

17

open drawer; open fridge
dry rack; open door

a = 1.0s

57

26

17

take curry; open drawer
close door; dry rack

a = 0.5s

Ground truth action: adjust chair RGB Flow OBJ

53

27

20

close door; close fridge
dry rack; take coffee

a = 2.0s

55

28

17

dry rack; enter kitchen
close door; close fridge

a = 1.5s

57

26

17

open drawer; open fridge
dry rack; open door

a = 1.0s

57

26

17

take curry; open drawer
close door; dry rack

a = 0.5s

Ground truth action: take mozzarella RGB Flow OBJ

50

32

18

close fridge; take tomato
take squash; pick up cucumber

a = 2.0s

51

33

16
close fridge; take tomato

pick up cucumber; take squash

a = 1.5s

51

34

15
close fridge; take tomato
open drawer; take bread

a = 1.0s

52

35

13
close fridge; take tomato

take box : fruit; take squash

a = 0.5s

Ground truth action: take mozzarella RGB Flow OBJ

50

32

18

close fridge; take tomato
take squash; pick up cucumber

a = 2.0s

51

33

16
close fridge; take tomato

pick up cucumber; take squash

a = 1.5s

51

34

15
close fridge; take tomato
open drawer; take bread

a = 1.0s

52

35

13
close fridge; take tomato

take box : fruit; take squash

a = 0.5s

Ground truth action: pour coffee RGB Flow OBJ

43

23

34

put jar; close jar : sugar
open door; take lid

a = 2.0s

43

23

34

put jar; close jar : sugar
open door; pick up fraiche

a = 1.5s

43

24

33

put jar; open door
pick up fraiche; close jar : sugar

a = 1.0s

44

23

33

put jar; pick up fraiche
open door; close jar : sugar

a = 0.5s

Ground truth action: pour coffee RGB Flow OBJ

43

23

34

put jar; close jar : sugar
open door; take lid

a = 2.0s

43

23

34

put jar; close jar : sugar
open door; pick up fraiche

a = 1.5s

43

24

33

put jar; open door
pick up fraiche; close jar : sugar

a = 1.0s

44

23

33

put jar; pick up fraiche
open door; close jar : sugar

a = 0.5s

Figure 4. Failure action anticipation example qualitative results (best seen on screen).

[5] R. D. Geest and T. Tuytelaars. Modeling temporal structure
with lstm for online action detection. In Winter Conference
on Applications in Computer Vision, 2018.

[6] R. Girshick. Fast R-CNN. In International Conference on
Computer Vision, pages 1440–1448, 2015.

[7] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár,
and K. He. Detectron. https://github.com/
facebookresearch/detectron, 2018.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[9] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
International Conference on Machine Learning, pages 448–
456, 2015.

[10] A. Jain, A. Singh, H. S. Koppula, S. Soh, and A. Saxena.

https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron

Recurrent neural networks for driver activity anticipation via
sensory-fusion architecture. In International Conference on
Robotics and Automation, pages 3118–3125. IEEE, 2016.

[11] Y. Li, M. Liu, and J. M. Rehg. In the eye of beholder: Joint
learning of gaze and actions in first person video. In Euro-
pean Conference on Computer Vision, 2018.

[12] Y. Li, Z. Ye, and J. M. Rehg. Delving into egocentric ac-
tions. In Computer Vision and Pattern Recognition, pages
287–295, 2015.

[13] S. Ma, L. Sigal, and S. Sclaroff. Learning activity progres-
sion in lstms for activity detection and early detection. In
Computer Vision and Pattern Recognition, 2016.

[14] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in pytorch. 2017.

[15] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In Advances
in Neural Information Processing Systems, pages 568–576,
2014.

[16] S. Sudhakaran, S. Escalera, and O. Lanz. Lsta: Long
short-term attention for egocentric action recognition. arXiv
preprint arXiv:1811.10698, 2018.

[17] S. Sudhakaran and O. Lanz. Attention is all we need: Nailing
down object-centric attention for egocentric activity recogni-
tion. British Machine Vision Conference, 2018.

[18] C. Vondrick, H. Pirsiavash, and A. Torralba. Anticipating
visual representations from unlabeled video. In Computer
Vision and Pattern Recognition, pages 98–106, 2016.

[19] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and
L. V. Gool. Temporal segment networks: Towards good prac-
tices for deep action recognition. In European Conference on
Computer Vision, pages 20–36, 2016.

[20] C. Zach, T. Pock, and H. Bischof. A duality based approach
for realtime tv-l 1 optical flow. In Joint Pattern Recognition
Symposium, pages 214–223, 2007.

[21] P. Zhang, J. Xue, C. Lan, W. Zeng, Z. Gao, and N. Zheng.
Adding attentiveness to the neurons in recurrent neural net-
works. In European Conference on Computer Vision, pages
135–151, 2018.

