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1. Hyperparameter Evaluation

Hyper parameters of Eq. 14, WY, WTP W, and W are evaluated experimentally using the validation set of UCF-101
[2] split 1, where we change the respective weight value while holding the rest of the parameters constant. The accuracy
plots against the respective hyper parameters are presented in Fig. 1. Based on these observations we set hyper-parameters
wV, wTP, we, w’ to 25, 20, 43 and 15, respectively.
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Figure 1. Hyperparameter evaluations

2. Network Architectures
2.1. Generator, Discriminator and Classifier

The architectures of the generator, discriminator and the classifier are presented in Fig. 2. For all LSTMs 300 hidden units
are used.

2.2. Ablation models

The architectures of the non-GAN based ablation models from (a) to (c) are visually illustrated in Fig. 3 while in Fig. 4
illustrates the architectures of the non-GAN based ablation models with future representation generators (models from (d) to

(&)
3. Qualitative Results

Synthesised visual and temporal representations from the proposed AA-GAN method along with ground truth information
for 3 sample videos from the TV human interaction dataset [1] are given in Figs. 5, 6 and 7. In the heat maps (rows 2-6)
yellow denotes high values and blue denotes low values. Considering the ground truth visual and temporal representations
shown, it is clear that salient aspects of the input frames, such as humans, objects and their interactions, have been identified;
and considering the synthesised representations the proposed model has been able to accurately anticipate these semantics
allowing the proposed AA-GAN model to anticipate the future.
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Figure 2. The architectures of generator (cid / GTF), discriminator (DY / DTPY and the classifier.
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Figure 3. The architectures of the Non-GAN based ablation models: from (a) to (c).
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(d) nC*V + GV': Model with the future visual representation generator (GV) and fed
only with the visual input stream to train the classifier.
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(e) TP 4 GTP: Model with the future temporal representation generator (G )
and fed only with the temporal input stream to train the classifier.
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® n©V+TP) L GV + GTP: Model with both future visual and temporal represen-
tation generators (GV and GT ) and fed with both visual and temporal input streams
to train the classifier.
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(g) n©(V+TP) L GV 4 GTP 4 Att: Model with both future visual and temporal
representation generators (G and GT ) and fed with both visual and temporal input
streams to train the classifier through attentions.

Figure 4. The architectures of the Non-GAN based ablation models with future representation generators: models from (d) to (g) .
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Figure 5. Qualitative results for a sample video from TV human interaction dataset [1].
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Figure 6. Qualitative results for a sample video from TV human interaction dataset [1].
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Figure 7. Qualitative results for a sample video from TV human interaction dataset [1].



