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1. Introduction
This supplementary document is organized as follows:

• Section 2: Analysis of adversarial features

– Subsection 2.1: Feature Statistics

– Subsection 2.2: Feature Inversion

• Section 3: Performance of FDA in black-box setting

• Section 4: Ablation study

• Section 5: Comparison of FDA with other existing at-
tack methods

– Subsection 5.1: Baseline Comparison

– Subsection 5.2: Evaluation against normally
trained models

– Subsection 5.3: Evaluation against Defense Pro-
posals

– Subsection 5.4: Evaluation against Defended
CIFAR-10 models

• Section 6 : Attacking Feature-Representation based
tasks

– Subsection 6.1 : Attack on Caption generation
models

– Subsection 6.2: Attack on Style transfer models

2. Analysis of adversarial features
2.1. Feature Statistics

Feature Cosine distance: Here, we show the cosine dis-
tance between intermediate feature representations of clean
and its corresponding adversarial samples generated by our
FDA attack. Figure 1 shows the cosine distance plots ob-
tained for models trained on ImageNet [12] dataset.
Dissimilarity metrics: Table 1 shows metrics measuring
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Table 1. Metrics for measuring the dissimilarity between adver-
sarial pre-logits and clean pre-logits on different networks. Com-
parison on normally trained models, with the different optimiza-
tion budgets (ε, nbiter , εsize). Our method FDA exhibits stronger
dissimilarity.

Metrics Cosine Distance NRT Distance

PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours

Optimization budget: (ε: 4, nbiter: 5, εsize: 1)
VGG-16 0.49 0.32 0.60 0.76 18.17 15.78 20.32 22.46
ResNet-152 0.33 0.23 0.40 0.62 12.59 11.22 13.52 16.92
Inc-v3 0.41 0.33 0.36 0.51 14.75 13.31 15.23 18.72
IncRes-v2 0.43 0.33 0.33 0.48 13.40 11.80 12.43 15.75
PNasNet-Large 0.74 0.66 0.68 0.83 23.84 22.44 23.65 26.22

Optimization budget: (ε: 8, nbiter: 10, εsize: 1)
VGG-16 0.64 0.48 0.81 0.95 20.10 18.32 23.34 24.64
ResNet-152 0.49 0.37 0.60 0.81 15.00 13.56 16.29 19.17
Inc-v3 0.51 0.41 0.49 0.55 16.11 14.97 17.38 18.99
IncRes-v2 0.49 0.41 0.48 0.50 14.82 13.31 15.10 16.24
PNasNet-Large 0.81 0.75 0.82 0.85 25.01 23.62 25.66 26.79

Optimization budget: (ε: 16, nbiter: 20, εsize: 2)
VGG-16 0.67 0.52 0.83 0.98 20.42 19.18 23.90 24.76
ResNet-152 0.54 0.40 0.62 0.84 15.74 14.05 16.76 19.66
Inc-v3 0.56 0.43 0.53 0.57 16.46 15.26 17.75 19.05
IncRes-v2 0.51 0.42 0.54 0.50 15.08 13.59 15.87 16.33
PNasNet-Large 0.84 0.77 0.87 0.85 25.23 23.92 26.14 27.04

the dissimilarity between pre-logits of clean and its corre-
sponding adversarial samples, obtained for models trained
on ImageNet dataset. These metrics are obtained for dif-
ferent optimization budgets. It can be observed that, our
method FDA exhibits stronger dissimilarity.

2.2. Feature Inversion

While feature inversion has a long history in machine
learning, we restrict ourselves to only present the formula-
tion presented by Mahendran et al. [10]. Feature inversion
can be summarized as the problem of finding the sample
whose representation is the closest match to a given repre-
sentation [16]. More formally, given a representation func-
tion ψ : Rh·w·c → Rd, we find an input xI , such that:

xI = argmin
x∈(h·w·c)

(
l(ψ(x), ψ(xI)) + λR(xI)

)
(1)
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Figure 1. Cosine distance between features of clean image and its corresponding adversarial sample, at different layer of Column-1: VGG-
16, Column-2: ResNet-152, Column-3: Inc-v3, Column-4: IncRes-v2, and Column-5: PNASNet.

(b) PGD-Adversarial Sample’s Feature Inversion

(a) Clean Sample’s Feature Inversion

(c) FDA-Adversarial Sample’s Feature Inversion

Conv 1-1 Conv 3-1 Conv 4-1 Conv 4-2 Conv 4-3 Conv 5-1 Conv 5-2 Conv 5-3

Figure 2. Feature Inversion: Layer-by-layer Feature Inversion [10] of clean, PGD-adversarial and FDA-adversarial sample. Note the
complete removal of clean sample information in later layers of FDA-adversarial sample.

where, l captures the dissimilarity of ψ(x) and ψ(xI), and
R representation regularization used to induce natural im-
age priors in x̂.

For deep feature representations, this objective is highly
ill-posed due to existence of multiple solutions. [10] pro-
pose utilizing TV norm minimization and l6 normalization
as regularizers while using l2 distance, or euclidean distance
for reconstruction. Inclusion of multiple loss terms lead to
extensive requirement of hyperparameter tuning, which can
be different for the different layers. Furthermore, for deep
features, the gradients remain noisy even with the regular-
ization and lead to poor feature inversion. We address these
drawbacks by introducing two innovations:

• Weak/Noisy Gradients from Deep features: While
inverting deep features, it is observed that recon-
structed input x̂ mostly contains high frequencies.

Hence while x̂ achieves low dissimilarity error, it re-
mains uninterpretable for the human eye. One way
to circumvent this issue is by normalizing the gradi-
ents by boosting the low frequency components and
decreasing the high frequency components. Follow-
ing common practices in Deep Dream [1], we utilize
Laplacian pyramid gradient normalization (LaPGN)
for normalizing our gradients.

• Extensive Hyperparameter Tuning: We observe that
proper weighting of the combined objective 1 becomes
even more critical after applying LaPGN, as gradients
from one or more of the objectives can be completely
lost due to poor weighting scheme. Hence, we instead
separately normalize the gradients of each objective,
and utilize a weighted combination of these gradients.
This allows the optimization to be more stable with



Table 2. Performance of proposed attack in black-box setting,
measured in terms of Fooling Rate (FR↑). For all attack meth-
ods, optimization budget is set to (ε=16, nbiter=10, εstep=2). *
Method is designed for black-box setting.

Source Model Attack
Target Model

Inception-v3 PNASNet

VGG-16

PGD 68.10 65.60
PGD-LL 9.50 4.20
PGD-CW 37.30 30.30
MI-FGSM* 90 88
FDA (ours) 90.90 85.30

ResNet-152

PGD 32.50 25.70
PGD-LL 9.4 3.60
PGD-CW 20.60 15.80
MI-FGSM* 61 52
FDA (ours) 56.60 44.10

respect to the weighting scheme, allowing us to use
only a single weighting scheme for each network.

Additionally, we remove the L6 normalization objective,
and use ADAM optimizer in our algorithm. In Figure 2, we
show an example of feature-inversion of adversarial sam-
ples at multiple intermediate layers for VGG-16.

3. Performance of FDA in black-box setting
In this section, we compare the performance of FDA

with other existing attacks in black-box setting (i.e., lim-
ited or no information of the target model is available to the
attacker). Table 2 shows the obtained plot. Source model is
used for generating adversarial samples and these samples
are tested on target model. From table 2, it can observed
that the Fooling rate (FR), NLOR and OLNR of FDA at-
tack is better PGD attacks and is on par with MI-FGSM at-
tack. Note that MI-FGSM attack is designed for black-box
setting.

4. Ablation study
In this section we show results for the proposed attack

with different choices of C (measure of central tendency),
in white-box setting. Table 3 shows the obtained results. It
can be observed that for C as median and variance, there is
drop in the Fooling Rate (FR), OLNR and NLOR. Whereas,
FDA with C as spatial-mean achieves consistent perfor-
mance (i.e. FR, OLNR and NLOR) across different net-
works.
5. Comparison of FDA with other existing at-

tack methods
5.1. Baseline comparisons

In this subsection, we provide results for baseline attack
formulations. We modify GD-UAP [11] (GD-UAPmod) to
perform image specific attack, and we also modify PGD-
CW [9] attack (PGD-CW-LL) in order to boost the confi-
dence of least likely predicted class. Table 4 presents the

Table 3. Performance of proposed attack for different choices ofC
(measure of central tendency) in white-box setting. The optimiza-
tion budget is set to (ε=4, nbiter=5, εstep=1)

C
Inception-v3 PNASNet

FR NLOR OLNR FR NLOR OLNR
Mean 100 540 663 99 485 516
Spatial Mean (FDA) 100 553 693 99 502 521
Median 85 201.69 122.63 73 78.6 21.99
Spatial Median 95 221 157 100 503 515
Variance 47 41 19 51 46.92 13.7
Spatial Variance 48 40 13 49 36 49

comparison of baseline attack formulations with the pro-
posed attack(FDA). It can be observed that for all the three
metrics FDA achieves superior performance.
5.2. Evaluation against normally trained models

In this subsection, we compare the performance of var-
ious attacks on normally trained models, for different opti-
mization budgets i.e., (ε, nbiter, εiter). Table 5 shows the
performance of various attacks, it can observed that FDA
achieves superior performance in all the three metrics.

5.3. Evaluation against Defense Proposals

We now present the exhaustive set of experiments we
conducted to perceive the effectiveness of FDA in the pres-
ence of various defense proposals. As observed previously,
FDA is found to be consistently stronger than previous state-
of-the-art attack formulations.

5.3.1 Adversarially trained models

We evaluate various attack formulations on adversari-
ally trained models, namely, Simple (adv) [7], Ensemble
(ens3) [13] and Adversarial-logit-pairing (alp) [5] based
adversarially trained models.We present results with differ-
ent optimization budgets, specified by the tuple (l∞ bound,
No. iterations, step-size).
ens and adv models: Table 6 presents the comparison.
Note that we evaluate low iteration methods on these mod-
els as the authors only claim robustness to single/two itera-
tion white-box attacks.
alp model: Table 7 presents the comparison. It can be ob-
served that our attack has high performance on all metrics
at the same time.

5.3.2 Input Defense

We evaluate various attack formulations on models that
are defended by input transformation [4], and randomiza-
tion [17] methods. Table 8, 9 and 10 shows the performance
of various attack on defended Inc-v3, IncRes-v2 and PNAS-
Net models respectively. It can be observed that our FDA
attack not only achieves higher fooling rate but also higher
NLOR and OLNR.



Table 4. Evaluation of various baseline attack formulations. Evaluation on normally trained models, with the optimization budget (ε=8,
nbiter=10, εsize=2).

Metrics Fooling Rate NLOR OLNR

GD-UAPmod PGD-CW-LL Ours GD-UAPmod PGD-CW-LL Ours GD-UAPmod PGD-CW-LL Ours

Optimization budget: (ε: 8, nbiter: 10, εsize: 1)
VGG-16 99.90 100.00 100.00 638.46 91.97 976.82 585.14 454.63 878.88
ResNet-152 76.10 99.90 100.00 173.68 42.39 968.55 114.76 420.96 685.81
Inc-V3 82.63 100.00 100.00 316.28 128.33 951.76 190.36 698.87 768.00
IncRes-v2 46.29 99.60 100.00 226.43 241.96 836.34 71.53 687.69 709.43
PNasNet-Large 48.20 99.00 100.00 313.51 310.36 795.42 190.22 662.94 720.11

Table 5. Evaluation of various attacks. Comparison on normally trained models, with the different optimization budgets (ε, nbiter , εsize).
The salient feature of our attack is high performance on all metrics at the same time.

Metrics Fooling Rate NLOR OLNR

PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours

Optimization budget: (ε: 4, nbiter: 5, εsize: 1)
VGG-16 99.90 99.90 93.80 97.80 57.26 6.17 539.92 433.33 308.34 29.19 217.98 455.26
ResNet-152 99.50 99.60 88.15 97.69 20.62 5.12 593.64 412.52 247.22 21.84 89.58 380.04
Inc-v3 99.20 99.10 89.06 99.80 61.73 21.95 599.49 549.57 524.65 63.86 92.45 669.31
IncRes-v2 94.18 94.58 74.30 99.60 75.43 44.51 314.20 492.95 314.14 44.46 67.02 487.76
PNasNet-Large 92.60 92.40 81.40 99.00 123.93 59.44 319.18 473.54 335.63 70.67 118.73 512.21

Optimization budget: (ε: 8, nbiter: 10, εsize: 1)
VGG-16 99.90 100.00 99.70 100.00 88.25 37.36 976.82 714.77 452.81 90.48 558.70 878.88
ResNet-152 99.90 99.90 99.70 100.00 40.54 33.04 968.55 593.66 426.82 85.20 306.66 685.81
Inc-v3 99.90 99.80 99.10 100.00 126.51 70.98 951.76 580.88 670.50 133.67 326.74 768.00
IncRes-v2 99.30 99.30 96.79 100.00 222.39 109.46 826.34 553.84 605.43 104.77 355.49 709.43
PNasNet-Large 99.30 99.00 95.90 100.00 270.75 127.90 795.42 596.23 571.44 150.68 459.09 720.11

Optimization budget: (ε: 16, nbiter: 20, εsize: 2)
VGG-16 100.00 100.00 100.00 100.00 79.36 23.86 997.88 770.59 465.62 73.74 635.57 926.46
ResNet-152 99.90 99.90 99.90 100.00 39.96 13.80 990.84 607.49 452.23 68.07 357.82 726.12
Inc-v3 99.90 99.90 99.90 100.00 98.08 67.35 996.39 615.85 754.56 136.24 439.37 816.89
IncRes-v2 99.70 100.00 99.90 100.00 202.88 100.65 983.49 570.76 705.94 113.30 552.66 757.67
PNasNet-Large 99.80 99.90 99.80 100.00 238.84 102.42 986.36 605.15 597.22 143.07 645.25 771.47

5.4. Evaluation against Defended CIFAR-10 models

In this subsection, we show the performance of vari-
ous attacks on defended models that are trained on CIFAR-
10 [6] dataset. Table 11 and 12 shows the effectiveness of
various attack formulation in white-box and grey-box attack
settings respectively.

6. Attacking Feature-Representation based
tasks

6.1. Attack on Caption generation models

In this subsection, we show the effectiveness of our at-
tack FDA in grey-box setting. We perform ”grey-box” at-
tack on “Show-and-Tell(SAT) [15], with different optimiza-
tion budgets. Table 13 present the performance of vari-
ous attack formulations. The right-most column tabulates

the metrics when complete white noise is given as input.
It can be observed that FDA adversaries generated from
Inception-V3 are highly effective for disrupting SAT.

6.2. Attack on Style transfer models

In this subsection, we provide qualitative results to show
the effectiveness of FDA. Figure 3 shows the effectiveness
of FDA attack on style transfer networks [14], column-1
represents the style images, the 1st image in column 2 and
3 represents the content image. The 2nd and the 3rd image
of column-2 and 3 represents the output of style transfer
network with and without FDA attack respectively. It can be
observed that due to FDA attack, content of stylized image
is severely damaged.

Furthermore, we have added examples of attack on video
clips as well, which are the primary use-case for Fast-style-



Table 6. Evaluation of various attacks. Comparison on adversarially trained models (adv & ens), with the different budgets. The salient
feature of our attack is high performance on all metrics at the same time.

Metrics Fooling Rate NLOR OLNR

PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours

Optimization budget: (ε: 8, nbiter: 1, εsize: 8)
Inc-V3adv 11.45 11.75 8.43 9.14 3.56 3.97 3.44 3.43 3.49 3.64 4.57 3.54
Inc-V3ens3 57.23 56.83 40.56 35.94 26.85 21.91 42.76 76.44 32.63 24.19 31.28 34.11
IncRes-V2adv 6.02 5.92 4.62 5.02 2.22 2.95 1.41 2.22 1.87 1.61 1.76 1.52
IncRes-V2ens3 43.47 45.88 24.20 26.41 8.54 9.01 16.50 59.90 19.50 14.25 15.69 12.98

Optimization budget: (ε: 8, nbiter: 2, εsize: 4)
Inc-V3adv 88.45 88.45 53.01 86.45 33.55 19.96 81.38 271.80 151.51 21.87 27.12 159.84
Inc-V3ens3 94.08 91.97 66.37 93.47 74.65 44.99 152.62 353.29 229.49 55.78 78.35 264.86
IncRes-V2adv 66.77 69.48 37.75 72.79 28.42 23.10 56.44 245.70 92.66 22.29 19.45 98.87
IncRes-V2ens3 73.49 73.80 44.38 82.83 39.72 29.87 75.86 303.81 107.04 22.25 19.98 146.06

Optimization budget: (ε: 8, nbiter: 5, εsize: 2)
Inc-V3adv 97.89 97.69 80.62 99.70 68.03 34.56 346.59 545.89 281.75 39.08 77.80 629.93
Inc-V3ens3 98.69 97.49 88.76 100.00 114.96 68.76 450.66 533.49 386.16 106.58 142.65 634.55
IncRes-V2adv 91.27 89.66 61.65 99.70 81.80 39.68 284.36 504.51 234.66 33.20 67.27 571.46
IncRes-V2ens3 98.69 97.49 88.76 100.00 114.96 68.76 450.66 533.49 386.16 106.58 142.65 634.55

Table 7. Evaluation of various attacks. Comparison on adversarially trained models (alp), with the different budgets. The salient feature
of our attack is high performance on all metrics at the same time.

Metrics Fooling Rate NLOR OLNR

PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours

Optimization budget: (ε: 8, nbiter: 2, εsize: 4)
Res-50alp 77.91 79.72 51.00 80.32 19.78 12.45 21.05 120.11 39.04 13.01 14.56 79.95

Optimization budget: (ε: 8, nbiter: 5, εsize: 2)
Res-50alp 85.04 87.15 51.10 80.02 22.28 10.83 20.60 119.41 77.55 11.14 14.90 81.73

Optimization budget: (ε: 16, nbiter: 10, εsize: 2)
Res-50alp 96.99 98.29 64.56 94.28 41.51 12.26 77.40 259.78 302.03 14.97 25.66 241.43

Optimization budget: (ε: 16, nbiter: 20, εsize: 2)
Res-50alp 96.69 98.39 64.86 94.78 46.07 12.21 89.22 257.09 325.30 14.33 24.54 238.07

transfer. While a viewer may still like the style on the at-
tacked videos, we emphasize that the fundamental draw-
back to be noted is the lack of fine-object details and object
edges.



Table 8. Evaluation of various attacks in the presence of input transformation based defense measures with different optimization budgets
on Inception-V3. While achieving higher fooling rate, we also achieve higher NLOR and OLNR.

Metrics Fooling Rate NLOR OLNR

PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours

Optimization budget: (ε: 8, nbiter: 5, εstep: 2)
Gaussian Filter 81.73 39.76 74.20 77.81 35.80 47.77 26.39 263.90 40.34 19.86 10.77 144.37
Median Filter 54.52 28.01 47.69 52.51 16.85 21.28 16.61 87.50 15.29 12.85 8.36 54.51
Bilateral Filter 50.90 22.09 42.37 39.06 9.29 9.49 6.35 38.32 4.84 4.10 2.63 23.12
Bit Quant. 56.22 35.14 46.69 60.34 15.16 18.97 16.22 78.57 13.61 14.37 11.70 50.17
JPEG Comp. 68.78 27.21 61.85 52.41 16.76 12.95 10.06 114.78 12.82 5.86 3.52 47.42
TV Min. 34.64 21.59 30.82 34.34 5.16 3.59 3.52 19.49 3.85 3.40 2.59 13.94
Quilting 30.82 21.49 29.02 33.43 4.64 3.79 3.78 7.14 4.78 3.93 4.15 9.21
Randomize [17] 79.82 42.97 71.99 84.74 53.46 69.15 38.03 312.11 58.53 24.41 13.32 208.26

Optimization budget: (ε: 16, nbiter: 10, εstep: 2)
Gaussian Filter 88.76 46.49 81.93 92.77 79.10 139.25 43.65 413.13 76.62 43.58 16.74 309.66
Median Filter 62.25 35.44 54.72 70.38 35.81 34.82 28.45 182.71 33.19 32.38 16.39 113.93
Bilateral Filter 67.27 28.51 55.12 64.86 23.61 11.71 17.46 132.41 9.11 9.57 4.78 78.99
Bit Quant. 77.61 48.09 69.28 87.95 51.51 63.19 41.79 278.16 48.34 28.16 23.45 224.75
JPEG Comp. 81.93 35.84 73.49 84.44 46.89 49.61 28.08 281.45 35.32 15.31 8.78 168.33
TV Min. 50.00 27.41 40.36 55.82 12.99 11.42 12.24 61.72 7.96 6.73 4.95 42.84
Quilting 41.27 29.72 34.34 46.59 7.80 10.31 7.07 37.21 7.03 8.15 5.88 22.47
Randomize [17] 83.03 50.80 77.61 93.37 80.15 141.81 51.16 411.57 82.55 38.32 22.81 321.25

Table 9. Evaluation of various attacks in the presence of input transformation based defense measures with different optimization budgets
on Inception-Resnet-V2. While achieving higher fooling rate, we also achieve higher NLOR and OLNR.

Metrics Fooling Rate NLOR OLNR

PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours

Optimization budget: (ε: 8, nbiter: 5, εstep: 2)
Gaussian Filter 73.80 28.11 61.75 75.40 41.26 46.77 26.40 325.66 31.96 18.37 9.36 156.10
Median Filter 43.37 15.36 32.53 49.80 18.62 14.99 17.19 147.32 11.70 18.33 9.60 64.03
Bilateral Filter 41.47 12.85 28.41 36.45 8.44 5.47 7.23 73.85 6.04 5.68 3.43 28.70
Bit Quant. 52.81 26.91 40.06 64.56 20.66 20.38 27.03 137.10 9.49 11.15 8.06 79.52
JPEG Comp. 68.78 21.18 55.32 67.27 25.32 20.59 19.48 235.64 17.62 8.67 6.22 85.50
TV Min. 27.61 10.24 18.78 29.32 5.21 3.38 2.86 40.55 6.28 5.19 4.52 18.43
Quilting 27.71 16.57 22.69 37.45 5.57 3.96 8.52 40.13 4.30 3.67 3.15 16.82
Randomize [17] 76.51 32.63 60.84 86.04 71.98 97.71 46.74 369.13 49.01 20.23 16.67 245.00

Optimization budget: (ε: 16, nbiter: 10, εstep: 2)
Gaussian Filter 81.93 36.95 68.57 92.87 74.59 133.03 34.52 443.16 63.44 27.98 12.40 364.81
Median Filter 50.40 23.19 38.45 70.88 34.75 24.49 20.36 238.69 27.03 19.07 14.40 139.86
Bilateral Filter 54.52 19.18 41.47 70.18 23.48 15.21 13.47 217.54 14.20 10.69 7.18 94.56
Bit Quant. 73.90 40.86 62.05 91.77 71.64 68.30 51.65 363.12 40.80 27.58 18.65 328.54
JPEG Comp. 79.82 31.83 66.67 96.18 55.99 70.58 37.38 418.41 41.44 16.75 9.15 342.41
TV Min. 38.96 17.67 27.81 55.72 12.53 10.10 8.76 130.38 10.27 8.36 5.55 63.08
Quilting 38.35 24.10 30.82 56.63 17.95 9.95 9.54 121.63 7.64 7.18 5.39 62.95
Randomize [17] 81.93 42.87 68.17 98.19 114.94 140.35 70.11 469.98 84.24 26.48 26.76 430.47



Table 10. Evaluation of various attacks in the presence of input transformation based defense measures with different optimization budgets
on PNASNet [8]. While achieving higher fooling rate, we also achieve higher NLOR and OLNR.

Metrics Fooling Rate NLOR OLNR

PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours

Optimization budget: (ε: 8, nbiter: 5, εsize: 2)
Gaussian Filter 83.40 45.00 73.30 74.80 88.16 136.01 51.86 346.85 73.78 21.09 18.78 170.85
Median Filter 65.00 29.70 52.60 63.60 48.60 60.70 42.27 229.15 30.60 17.92 9.37 83.53
Bilateral Filter 52.70 21.60 41.10 43.10 22.85 22.16 18.26 113.25 12.17 5.65 6.26 39.93
Bit Quant. 46.20 29.10 38.40 56.70 19.51 20.89 20.11 119.46 11.34 13.36 7.22 54.29
JPEG Comp. 69.50 28.20 58.90 57.40 42.09 39.40 29.06 192.71 22.77 7.88 7.00 62.46
TV Min. 34.50 17.60 24.80 36.50 9.72 16.88 9.15 51.40 6.78 6.11 4.08 30.33
Quilting 29.90 19.30 24.40 37.20 16.69 10.54 8.16 45.48 12.06 6.37 7.11 21.10
Randomize [17] 82.60 52.40 71.90 91.50 117.89 183.05 69.07 450.78 113.73 64.16 29.96 349.79

Optimization budget: (ε: 16, nbiter: 10, εsize: 2)
Gaussian Filter 86.90 49.30 80.60 91.10 126.30 275.02 82.44 453.84 128.44 61.76 31.40 332.29
Median Filter 71.00 33.40 61.30 79.60 70.47 98.60 45.35 335.62 51.50 32.98 16.27 182.40
Bilateral Filter 69.20 31.50 57.20 78.80 52.06 61.86 32.17 284.45 32.54 14.02 12.27 157.42
Bit Quant. 70.00 42.80 63.40 88.50 69.75 83.59 37.30 342.21 49.21 32.42 20.12 242.70
JPEG Comp. 84.10 40.10 74.00 92.20 91.62 116.03 57.73 387.58 66.08 24.37 16.65 240.50
TV Min. 48.70 24.30 39.70 62.50 21.32 25.24 25.65 150.21 14.89 13.83 10.26 89.05
Quilting 40.10 26.00 32.90 56.10 20.52 22.51 24.37 122.35 10.78 12.70 7.61 52.33
Randomize [17] 85.40 55.80 78.70 98.70 163.96 281.98 97.14 507.89 163.88 99.48 48.26 489.07

Table 11. Evaluation of various attacks in the presence of defense measures on CIFAR-10 dataset. We show evaluation at multiple
optimization budgets. While achieving lower fooling rate at times, we achieve higher NLOR and OLNR.

Metrics Fooling Rate NLOR OLNR

PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours

Optimization budget: (ε: 8, nbiter: 10, εsize: 1)
Normal Model 62% 100% 74% 100% 2.94 2.08 5.51 6.51 3.12 7.00 4.87 8.32
Madry et al. [9] 20% 29% 13% 7% 2.25 2.00 2.19 3.72 2.21 2.47 2.24 2.88
Dhillon et al. [3] 56% 75% 43% 57% 2.56 2.35 3.20 5.12 2.67 3.58 3.26 4.64
Buckman et al. [2] - 28% 6% 14% - 2.14 2.23 2.72 - 2.38 2.25 2.56

Optimization budget: (ε: 16, nbiter: 20, εsize: 1)
Normal Model 71% 100% 85% 100% 3.96 2.16 5.86 6.96 4.12 8.68 5.71 8.97
Madry et al. [9] 39% 70% 25% 32% 2.73 2.06 3.38 5.83 2.54 4.64 3.14 4.23
Dhillon et al. [3] 71% 100% 75% 98% 3.65 2.51 5.51 6.66 3.9 6.78 5.12 6.98
Buckman et al. [2] 0% 78% 14% 69% - 2.35 2.50 5.00 - 4.18 2.57 3.89

Table 12. Evaluation of various attacks in the presence of defense measures on CIFAR-10 dataset in a “Grey-box” setting, where the
attacker is not aware of the defense mechanism. We show evaluation at multiple optimization budgets. While achieving lower fooling rate
at times, we achieve higher NLOR and OLNR.

Metrics Fooling Rate NLOR OLNR

PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours PGD-ML PGD-CW PGD-LL Ours

Optimization budget: (ε: 8, nbiter: 10, εsize: 1)
Dhillon et al. [3] 32% 99% 75% 99% 2.73 2.57 5.51 5.80 2.91 5.11 5.12 7.43

Optimization budget: (ε: 16, nbiter: 20, εsize: 1)
Dhillon et al. [3] 60% 100% 55% 100% 3.62 2.53 4.40 6.53 3.93 8.44 3.91 8.90



Table 13. Attacking ”Show-and-Tell”(SAT) [15] in a “Grey-box” setup with different optimization budgets. The right-most column
tabulates the metrics when complete white noise is given as input. FDA Adversaries generated from Inception-V3 are highly effective for
disrupting SAT.

Metrics No Attack PGD-ML PGD-LL MI-FGSM Ours PGD-ML PGD-LL MI-FGSM Ours PGD-ML PGD-LL MI-FGSM Ours Noise

(4, 5, 1) (8, 10, 1) (16, 20, 1)
CIDEr 103.21 71.72 80.41 63.20 16.33 47.95 47.13 49.23 4.90 35.25 23.58 38.33 3.35 2.84
Blue-1 71.61 63.87 65.80 60.95 46.33 57.04 55.68 57.18 39.80 52.41 48.27 53.56 38.29 37.60
RoughL 53.61 47.01 48.72 45.15 34.56 42.15 41.24 42.65 30.70 39.03 36.37 39.75 29.71 29.30
METEOR 25.58 20.88 22.02 19.56 11.93 17.50 16.78 17.34 10.02 15.15 12.92 15.70 8.86 7.84
SPICE 18.07 13.56 15.04 12.13 4.28 9.60 9.45 10.02 2.04 7.68 5.68 8.44 1.71 1.00

Figure 3. Multiple Examples of style transfer using Ulyanov et al. [14]’s approach. The attacked samples are severely degraded.
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