
Supplementary Material for
Disentangling Propagation and Generation for Video Prediction

A. Implementation Details

General architectural configuration We adapt our ar-
chitectures from Zhu et al. [11] and Johnson et al. [5]. For
all experiments described in the main paper, we use 5 blocks
for the encoder and 5 blocks for the decoder. Below, we fol-
low the naming convention used in their Github repositories
to describe our general architectural configuration.

Let cMsN-K denote a M×M Conv-BN-Activation layer
with stride N and K filters. We use Inplace-ABN [10] to
reduce the memory consumption. Further, let us define a
encoder basic block eM-K by cascading cMs1-K with an-
other downsample convolution block cMs2-Kwhere ReLU
is used1. The basic decoder block dM-K consists of a
nearest-neighbor upsample layer followed by two cMs1-K
layers in which activation layers are chosen as LeakyReLUs
of slope 0.2.
Flow Predictor Our flow predictor F could be defined
as:

e7-64, e5-128, e5-256, e3-512, e3-512,
d3-512, d3-512, d3-256, d3-128, d3-2,
where the last output layer has no activation, i.e., the flow
prediction network regresses unconstrained displacement
values for each coordinates. Raised by [4], we also em-
pirically confirmed large kernel sizes, in first several layers,
help the training to converge.
Occlusion Inpainter Our occlusion inpainter uses the
same architectural parameters as in the flow predictor. The
only differences here are that: (1) we replace the normal
convolution operators with partial convolution operators in
all eM-K’s and fusion convolution operators in all dM-K’s;
(2) we replace d3-2 with d3-3, where Tanh activation is
used to bound the output value between −1 and 1.

B. Training Details

Here we specify more training details to supplement
what we have described in the main paper. To train the
flow predictor, we start from the learning rate at 10−4 and
decay it by 1/10 at the half of the training epochs, then

1All ReLU units are approximated by LeakyReLUs of slope 0.01 to be
compatible with Inplace-ABN [10]

repeat it again at the 3/4 of the training epochs. The occlu-
sion inpainter is trained from 10−3 and scheduled with the
same decay strategy. We train our flow predictor, and occlu-
sion inpainter for 200 epochs, and 800 epochs on CalTech
Pedestrian dataset [2]. For KITTI Flow dataset [9], they are
trained for 500 and 1000 epochs, respectively.

C. Supplementary Results
In this section, we include more results to supplement

our main paper. We include more qualitative results for both
Next-Frame Prediction and Multi-Frame Prediction. We
also include the quantitative results for SSIM evaluations
on Multi-Frame Prediction tasks on KITTI Flow dataset. To
better assess our prediction results please refer to our web-
site 2.
Next-Frame Prediction More qualitative results are
shown in Figure S1 and S2, respectively. The experiment
settings are consistent with the setups we established in the
main paper.
Multi-Frame Prediction We here show comparison re-
sults for Multi-Frame Predictions in Figure S3. The exper-
iment setting is 4-in 8-out prediction task. Compared to
prior work [3] whose flow prediction degrades dramatically
after a few time steps, our model can remain high fidelity
even at the last several frames. We here also include the
quantitative results for SSIM evaluations in S4.

D. Supplementary Ablations
In Table S1, we add one more ablation study to resolve

the concern about the auxiliary losses we applied to our
model. We build three groups of comparison experiment
by removing perceptual and style losses, segmentation loss,
or replacing our fusion decoder with normal partial convo-
lutions as in [6]. All generators are trained using the same
oracle model used in motion ablation studies. Removing
perceptual and style losses does not hurt the performance of
PSNR, but leads to large degeneration in structural and per-
ceptual metrics. On the other hand, removing segmentation
loss and our fusion decoding blocks results in performance
drops in all metrics.

2https://sites.google.com/view/fgvp
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Figure S1: More qualitative comparisons for 10-in 1-out Next-Frame Prediction on CalTech Pedestrian dataset.
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Figure S2: More qualitative comparisons for 4-in 1-out Next-Frame Prediction on KITTI Flow dataset.
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Figure S3: Qualitative comparisons for 4-in 8-out Multi-Frame Prediction on KITTI Flow dataset.

Figure S4: SSIM↑ quantitative results for 4-in 8-out Multi-Frame Prediction on KITTI Flow dataset.

Method PSNR↑ SSIM↑ LPIPS↓ (×10−2)

w/o p+s 23.3 0.748 17.9
w/o seg 22.6 0.766 10.2
w/o fus 22.42 0.760 10.8

all 23.3 0.786 9.9

Table S1: Supplementary ablation study on auxiliary losses in our model.
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