
Learning Single Camera Depth Estimation using Dual-Pixels
Supplement

1. Derivation of Equation 2
Suppose a point light source is located at depth Z(x, y)

where the center of the camera lens is at position (0, 0, 0).
Light from this point light source is focused by the lens to
another point on the opposite side of the lens. Let Zi be the
distance from the lens to this other point. Also, let g be the
focus distance and gi be the position of the sensor. By the
paraxial and thin-lens approximations,

1

gi
=

1

f
− 1

g
and

1

Zi
=

1

f
− 1

Z
. (1)

By similar triangles, the blur size b is

b =
L(gi − Zi)

Zi
(2)

Substituting Eqn. 1 into Eqn. 2, we get Eqn. 2 in the main
paper

b =
Lg

1− f/g

(
1

g
− 1

Z

)
(3)

2. Data Processing
2.1. Depth from Multi View Stereo

We use two different stereo algorithms for computing the
“ground truth” depth maps we use for training and evalu-
ation. These depth maps are computed at a resolution of
756× 1008, i.e., one quarter the resolution of RGB images.

We use the COLMAP multi-view stereo algorithm [1, 9]
that computes per pixel depth and filters based on geomet-
ric consistency. We sample depth using inverse perspective
sampling in the range [0.2m, 100m] to yield D∗. Confi-
dence C is set to zero wherever COLMAP does not provide
depth due to geometric inconsistency, and is set to 1 else-
where.

Because the depth maps from COLMAP tend to have
edge fattening artifacts on our data, we implemented our
own plane-sweep multi-view stereo algorithm. We plane
sweep along 256 planes sampled using inverse perspective
sampling in the range [0.2m, 100m] and take the minimum
of a filtered cost volume as each pixel’s depth. To com-
pute the cost volume, for each pixel, we compute the sum of

absolute differences for each of the warped neighbors and
then bilaterally filter the cost volume using the grayscale
reference image as the guide image. This ensures that we
are aggregating costs over similar pixels in a local window
thus avoiding edge fattening artifacts [8]. We use a spatial
sigma of 3 pixels and a range sigma of 12.5 for the bilat-
eral filter. Finally, we normalize the plane indices to [0,
1] range so that they are in the same domain as COLMAP
depth. To compute confidence, we check for depth coher-
ence across views by checking for left / right consistency
[2]. We first compute consistency with each of the 4 neigh-
boring images:

Cj(x, y) = exp

(
−
∥∥D∗

0(x, y)−D∗
j (M(x, y;D∗

0))
∥∥2

2σ2

)
(4)

where σ = 1/256, and j is the index of the neighboring im-
age. Then, under the assumption that a pixel must be visible
in at least two other cameras for its depth to be reliable, we
take the product of the largest two Cj(x, y) values for each
pixel to compute our final confidence C(x, y).

A sample of images from our test set with corresponding
depth from our method and COLMAP is shown in Fig. 1.

2.2. Preprocessing of RGB and Dual-Pixel Data

RGB images are 3024× 4032, but we always downsam-
ple them to 1512 × 2016. The green pixels in each Bayer
quad on the camera sensor are split in half (Fig. 2 in main
paper). In the RGB image, the sensor sums adjacent green
half-pixels to form the green channel. In the DP data, the
sensor bins four green half-pixels in a 4× 2 pattern to yield
DP data of size 756×2016×2. This data is 10-bit raw data
and we apply a square root to the raw data and quantize the
result to 8-bits. We also upsample the first dimension to
1512, so that its dimensions match those of the downsam-
pled RGB image. When feeding RGB and DP images as
input to the model, they are simply concatenated along the
channel dimension to form a 5 channel input.

(a) RGB Image (b) Our True Depth (c) COLMAP’s Depth

Figure 1. Images (a) from our test set, ground truth depth (b) com-
puted using our multi-view stereo pipeline, and ground truth depth
(c) computed using COLMAP [1]. Low confidence regions are
shown in white. Our depth tends to be conservative in labelling a
depth sample confident and avoids edge fattening artifacts.

3. Evaluation Metrics
3.1. Affine Invariant Weighted Error

One metric we use to evaluate models against our
ground-truth depths is the minimum of a Lp-norm between
an estimated inverse depth D̂ and the true inverse depth D∗

(weighted by the true depth’s confidence C and scaled by
the number of pixels) under all possible affine transforma-
tions. Let us define AIWE(p) as:

min
a,b

∑(x,y) C(x, y)
∣∣∣D∗(x, y)−

(
aD̂(x, y) + b

)∣∣∣p∑
(x,y) C(x, y)

1/p

(5)
Because root mean squared error and mean absolute er-
ror are standard choices when comparing depth maps, in
the paper we present AIWE(2) (affine-invariant weighted
RMSE) and AIWE(1) (affine-invariant weighted MAE).
AIWE(2) can be evaluated straightforwardly by solving a
least-squares problem, and AIWE(1) can be computed us-
ing iteratively reweighted least squares (in our experiments,
we use 5 iterations).

3.2. Spearman’s Rank Correlation Coefficient

We also use Spearman’s rank correlation coefficient ρs
for evaluation, which evaluates the ordinal correctness of
the estimated depth. Because ρs is a function of the rank of
each pixel’s depth, it is invariant to any monotonic transfor-
mation of the depth which, naturally, includes affine trans-
formations (with positive scales). Because our ground-truth
depths D∗ may contain repeated elements, ρs is computed

by first computing the ranks of all elements in D∗ and D̂
and then computing the Pearson correlation of those ranks.
We use the ground-truth depth confidencesC when comput-
ing Pearson correlation (using it to weight the expectations
used to compute the variances and covariance of the ranks)
thereby resulting in a weighted variant of Spearman’s ρ. To
handle cases when the affine scaling is negative, we take
the absolute value of ρs, and we report 1− |ρs| to maintain
consistency with AIWE(·), in terms of lower values being
better.

4. Model Architecture

Our DPNet architecture is composed of two key build-
ing blocks, an encoder block E(i, o, s) and a decoder block
D(i, o) where i denotes number of intermediate features,
o denotes number of output features, and s denotes the
stride which controls the downsampling done by the en-
coder block. Each encoder block takes as input the output
from the previous encoder block. Each decoder block takes
as input the output of the previous decoder block and the
output of an encoder block as a skip connection. Unless
otherwise mentioned, we use Batch Normalization [6] be-
fore each convolution layer and PReLu [5] as an activation
function for each output with initial leakiness ai set to be
0.05.

Each encoder block Ea(i, o, s) consists of a series of 3
convolutional layers, the first of which has i filters with size
3 × 3 and stride s, the second of which is a depthwise sep-
arable 3× 3 convolutional layer with i filters, and the third
of which is a 1× 1 convolutional layer with o filters whose
output is added to the max-pooled input (with pool size and
stride both s) before applying a PReLu activation.

We also use a different encoder block Eb(o, s) that is di-
rectly applied to the input images, which is a convolutional
layer with o filters of size 7×7 and stride s, whose output is
concatenated with max-pooled input images with pool size
and stride s.

For each decoder block D(i, o), we first apply a 4 × 4
transposed convolutional layer with stride 2 and i filters to
the output of the previous decoder layer, followed by a 3×3
depth separable convolutional layer and a 1 × 1 convolu-
tional layer, each with i filters, followed by a 3 × 3 depth
separable convolutional layer with i filters whose output is
added to the filtered skip connections before which itself
has been filtered via a 3 × 3 depth separable convolutional
layer. PReLu activation is applied after summing the two.
Finally, a 1 × 1 convolutional layer with o filters generates
the output for the next decoder block.

The overall model consists of a series of encoders fol-
lowed by a series of decoders:

Eb(8, 2) E1
a(11, 11, 1)

Ea(16, 32, 2) Ea(16, 32, 1) E2
a(16, 32, 1)

Ea(16, 64, 2) Ea(16, 64, 1) E3
a(16, 64, 1)

Ea(32, 128, 2) Ea(32, 128, 1) E4
a(32, 128, 1)

Ea(32, 128, 2) Ea(32, 128, 1) Ea(32, 128, 1)
D4(32, 128)
D3(16, 64)
D2(16, 32)
D1(8, 8)

where the outputs of each encoder marked with a super-
script are connected by skip connections to a corresponding
decoder with that superscript. The predictions at 5 different
resolutions are obtained by applying a 3 × 3 convolu-
tion with a single filter and no activation and no Batch
Normalization to the outputs of the decoders and the last
encoder.

Our VGG model is same as that of [4] but we remove the
last decoder block since our depth maps are at half the input
resolution.

(a) Input Image (c) DPNet (Affine) (c) VGG (Affine)
RGB + DP RGB + DP

Figure 2. Results of DPNet and VGG, both with RGB + DP input
and trained with affine invariance.

AIWE(1) AIWE(2) 1− |ρs|
DPNet trained on Stereo .0218 .0319 .180
DPNet trained on Multi-view .0175 .0264 .139

Table 1. Comparison of stereo training data with multi-view train-
ing data. Accuracy is higher when using all the views for training
vs just using the center-bottom camera pairs from the capture rig.

AIWE(1) AIWE(2) 1− |ρs|
Extended test set .0188 .0276 .153
Standard test set .0175 .0264 .139

Table 2. DPNet’s accuracy on our standard test set (which only
contains devices that are in the training set) vs our extended test
set, which contains 7 other devices that were not used to generate
the training set. The accuracy is only slightly worse, suggesting
that our model has learned to circumvent the need for calibration.

5. Supplementary Results

5.1. VGG vs DPNet

As reported in Table 2 in the main paper, the best results
with VGG model are slightly inferior than DPNet in spite
of having a larger capacity. This is because VGG has a ten-
dency to overfit due to the larger capacity. Qualitatively, we
find the results with VGG to be very similar to results with
DPNet (Fig 2). VGG also overfits for RGB input, hence
those results are omitted from Table 2 in the main paper.

5.2. Multi-View vs Stereo

In Table 1, we present additional results in which we
demonstrate that simultaneously training our model on all
4 alternative views provided by our capture setup outper-
forms an ablation of our technique that has been trained on
only stereo views.

5.3. Generalization Across Devices

Our training and test sets consist of images from only
three different phones. As noted by Wadhwa et al. [10], the
relationship between depth and disparity from dual-pixels
can vary from device to device because of variations during
the manufacturing process, which they compensate for with
a calibration procedure. Though we do not apply any per-
device calibration, our performance degrades only slightly
for phones that were not used to capture the images in the
training set (Table 2). To demonstrate this, we evaluate our
model on an extended test set containing devices that were
not used to acquire any images in the training set. To con-
struct this set, we use data from all 5 phones on the capture
rig, i.e., the center phone and the surrounding phones. This
extended set contains data from all 10 devices used for cap-
ture while the training set contains only data from just 3 of
those devices.

Method Invariance Percentile Based WRMSE
Our Depth COLMAP Depth

DPNet (RGB) Scale .0890 .0908
Affine .1502 .1484

DPNet (RGB+DP) Scale .0390 .0417
Affine .0328 .0368

Table 3. WRMSE metric for a subset of rows from Table 2 in the
main paper where affine ambiguity is resolved by considering 1/3
and 2/3 percentile values. This also shows the importance of DP
input and affine invariance being useful for training with DP input.

5.4. Additional Metrics

For scale invariant prediction, [11] introduces a metric
where the scale ambiguity is resolved by taking the ratio of
the median of the prediction and of the ground truth. This
is not directly applicable to our affine invariant prediction,
as a single correspondence does not overconstrain an affine
transformation. To adapt this technique to the affine invari-
ance case, we compute the 1/3 and 2/3 weighted percentile
values (where the median would be the 1/2 percentile) of the
prediction and of the ground truth (using the confidences of
the ground truth as weights) and then use those two corre-
spondences to recover an affine transformation to resolve
the ambiguity. Table 3 shows that DP input is critical and
affine invariance helps learning with DP input when mea-
sured with this metric.

5.5. Additional Comparisons

We show additional results in Fig. 3 and 4. In addition,
we also show the best and the worst 5 results of our method
as determined by 1−|ρs|metric in Fig. 5 and 6 respectively.

5.6. Results on data from Wadhwa et al. [10]

We also run our model on the dual-pixel data provided
by [10] and show that affine invariant depth can be used to
synthetically defocus an image (Fig. 7). We use our DPNet
model trained with only DP input, and the unknown affine
mapping is determined by choosing the depth to focus at
and the amount of synthetic defocus to render. Similar to
[10], we ensure that depth maps are edge-aligned with the
corresponding RGB image by applying a bilateral filter fol-
lowed by joint bilateral upsampling [7]. Rendering is done
using the algorithm of [10]. As seen in the figure, fewer
errors in depth results in fewer errors in the synthetically
defocused image.

References
[1] COLMAP. https://colmap.github.io/.
[2] Michael Bleyer and Christoph and Rhemann. Patchmatch

stereo - stereo matching with slanted support windows.
BMVC, 2011.

[3] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-
manghelich, and Dacheng Tao. Deep ordinal regression net-
work for monocular depth estimation. CVPR, 2018.

[4] Clément Godard, Oisin Mac Aodha, and Gabriel J. Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. CVPR, 2017.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. ICCV, 2015.

[6] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. ICML, 2015.

[7] Johannes Kopf, Michael F. Cohen, Dani Lischinski, and Matt
Uyttendaele. Joint bilateral upsampling. ACM TOG, 2007.

[8] Christian Richardt, Douglas Orr, Ian Davies, Antonio Crim-
inisi, and Neil A. Dodgson. Real-time spatiotemporal stereo
matching using the dual-cross-bilateral grid. ECCV, 2010.

[9] Johannes L. Schönberger, Enliang Zheng, Jan Michael
Frahm, and Marc Pollefeys. Pixelwise view selection for
unstructured multi-view stereo. ECCV, 2016.

[10] Neal Wadhwa, Rahul Garg, David E. Jacobs, Bryan E.
Feldman, Nori Kanazawa, Robert Carroll, Yair Movshovitz-
Attias, Jonathan T. Barron, Yael Pritch, and Marc Levoy.
Synthetic depth-of-field with a single-camera mobile phone.
SIGGRAPH, 2018.

[11] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G.
Lowe. Unsupervised learning of depth and ego-motion from
video. CVPR, 2017.

https://colmap.github.io/

(a) Input Image (b) GT Depth (c) DPNet (Affine) (d) DPNet (Scale) (e) DPNet (Affine) (f) DORN [3] (g) Wadhwa et al.
RGB + DP RGB + DP RGB RGB RGB + DP [10]

Figure 3. Additional results similar to Table 5 in the main paper.

(a) Input Image (b) GT Depth (c) DPNet (Affine) (d) DPNet (Scale) (e) DPNet (Affine) (f) DORN [3] (g) Wadhwa et al.
RGB + DP RGB + DP RGB RGB RGB + DP [10]

Figure 4. Additional results similar to Table 5 in the main paper.

(a) Input Image (b) GT Depth (c) DPNet (Affine) (d) DPNet (Scale) (e) DPNet (Affine) (f) DORN [3] (g) Wadhwa et al.
RGB + DP RGB + DP RGB RGB RGB + DP [10]

Figure 5. Top 5 results of our method (DPNet with affine invariance) as determined by 1 − |ρs| metric. These tend to be textured scenes
with close focus distances.

(a) Input Image (b) GT Depth (c) DPNet (Affine) (d) DPNet (Scale) (e) DPNet (Affine) (f) DORN [3] (g) Wadhwa et al.
RGB + DP RGB + DP RGB RGB RGB + DP [10]

Figure 6. Worst 5 results of our method (DPNet with affine invariance) as determined by 1 − |ρs| metric. These tend to be scenes with
textureless surfaces or containing far off objects. For the fourth image in column (e), a particularly bad prediction results in an incorrect
affine mapping that collapses all depths to a single value.

(a) Input Image (b) Depth from [10] (c) Our Depth (d) Defocus result from [10] (e) Our defocus result

Figure 7. Using our learned model to predict depth and render synthetic defocus results on data from Wadhwa et al. [10]. While depth maps
from [10] contain errors, especially on saturated and optically blurred regions, our depth maps are clean and produce pleasing synthetic
defocus results. E.g., notice the sharp highlights in the background in the first and the third image, uneven background blur in second
image, and incorrect foreground blur in final image in results from [10].

