
Supplementary material

Figure SM1. Images and learned disparity maps from the set collected from YouTube8M.

A. Supplementary material

A.1. Accuracy of camera intrinsics – derivation

In this section we derive Eq. 3, which estimates the ac-
curacy of the supervision signal that rotations provide for
learning the camera intrinsics. Let R and t be the rotation
that occurs between two frames, and K be the intrinsic ma-
trix

K =

fx 0 x0
0 fy y0
0 0 1

 . (SM1)

For every pixel location p in the first frame, Eq. 1 provides
the shifted location p′ due to R and t.

The photometric loss terms provide a supervision signal
for p′. Therefore, they do not discriminate between combi-
nations of R, t and K, as long as they produce the correct
p′. Let R̃, t̃ and K̃ be a set of possibly-incorrect predictions
for R, t and K. If we are able to satisfy

KRK−1zp+Kt = K̃R̃K̃−1zp+ K̃t̃, (SM2)

R̃, t̃ and K̃ are as good a solution as R, t and K.
As argued in Sec. 4.4, t̃ can always be chosen such that

the Kt and K̃t̃ in Eq. SM2 cancel each other. Translations
are thus be henceforth omitted. z cancels out as well, which
intuitively makes sense, since for a pinhole camera, in the
absence of translation, the amount of shift in pixel space
due to a rotation depends on the rotation only, not on the
distance of the object containing the pixel from the camera.
p in homogeneous coordinates can be written as

(px, py, 1), where px and py are the coordinates of a pixel
in pixel space. After the rotation, px will me displaced to

p′x =
(KRK−1p)1
(KRK−1p)3

p̃′x =
(K̃R̃K̃−1p)1

(K̃R̃K̃−1p)3
, (SM3)

depending on whether we use K and R or K̃ and R̃. The
1 and 3 subscripts indicate the respective component of the
three dimensional vector obtained by multiplying the 3x3
matrix KRK−1 or K̃R̃K̃−1 by the three-dimensional vec-
tor p. p′y and p̃′y have analogous expressions, with the sub-
script 1 replaced by 2.

In what follows, we only consider small rotations, since
imposing photometric consistency across frames is typi-
cally only possible when the rotation is small enough to al-
low significant overlaps between the fields of view before
and after the rotation, and because small-angle approxima-
tions facilitate deriving simple analytic equations like Eq. 3.

We thus write R as

R = 1+r, where r =

 0 rz −ry
−rz 0 rx
ry −rx 0

 , (SM4)

and similarly for R̃. Expanding Eq. SM3 in Taylor series
with respect to r, we obtain

p′x = px + (KrK−1p)1 − px(KrK−1p)3, (SM5)

and similarly for p̃′x.
Substituting Eq. SM1 and Eq. SM4 to Eq. SM5 gives a

p′x = −fxry − ry
(px − x0)2

fx
+ (SM6)

rx
(px − x0)(py − y0)

fy
+ rz

(py − y0)fx
fy

p′y = fyrx + rx
(py − y0)2

fy
+ (SM7)

− ry
(px − x0)(py − y0)

fx
− rz

(px − x0)fy
fx

and similarly for p̃′x, p̃′y .
We assume that errors in estimating K and R that result

in a difference that is much less than a single pixel do not
affect the photometric loss, and thus cannot be eliminated
by it. We therefore need to derive an expression for the
range where K̃ and R̃ can be such that |p̃′x − p′x| � 1 and
|p̃′y − p′y| � 1.

Equations SM6 and SM7 provide the foundation for a
full error analysis on K and R, but a full analysis falls be-
yond the scope of the present paper. Instead, we limit our
discussion to the error analysis of the focal length. Suppose
that the networks mispredicted fx and fy , yielding f̃x and
f̃y instead. Since the same network predicts R, we assume
it chose an R̃ that tries to undo some of the effects of the
mispredicted f -s. For simplicity, we choose R such that at
least at the pixels on the optical axis (px = x0, py = y0), p′x
and p′y remain unchanged. From Eqs. SM6 and SM7 one
can see that this requires

r̃y = ryfx/f̃x, r̃x = rxfy/f̃y. (SM8)

We can now write the tilde version Eqs. SM6 and SM7,
using rprime to eliminate r̃x and r̃y form the equations. The
result is:

p̃′x = −fxry − ryfx
(px − x0)2

f̃2x
+ (SM9)

rxfy
(px − x0)(py − y0)

f̃2y
+ rz

(py − y0)f̃x
f̃y

p̃′y = fyrx + rxfy
(py − y0)2

f̃2y
+ (SM10)

− ryfx
(px − x0)(py − y0)

f̃2x
− rz

(px − x0)f̃y
f̃x

Putting p̃′x = p′x + δp′x, f̃x = fx + δfx, and similarly for
their y counterparts, and subtracting Eqs. SM6 and SM7
from Eqs. SM9 and SM10, we obtain

δp′x = 2ryδfx
(px − x0)2

f2x
(SM11)

− 2rxδfy
(px − x0)(py − y0)

f2y

+ rz
(py − y0)fx

fy

(
δfx
fx
− δfy

fy

)

δp′y = −2rxδfy
(py − y0)2

f2y
(SM12)

+ 2ryδfx
(py − y0)(px − x0)

f2x

− rz
(px − x0)fy

fx

(
δfy
fy
− δfx

fx

)
,

where terms of higher than first order in δfx and δfy have
been dropped.

Eqs. SM11 and SM12, along with the requirement that
|δp′x| � 1 and |δp′y| � 1, can be used to estimate the
bounds of δfx and δfy given an arbitrary small rotation r.
In order to gain some insight into Eqs. SM11 and SM12, in
what follows we derive explicit expressions for the bounds
of δfx and δfy for the cases where two out of the three
components of r are zero, that is, rotations around the x, y
and z axes.
Rotations around the z axis If only rz is nonzero,
Eqs. SM11 and SM12, along with |δp′x| � 1 and |δp′y| � 1
reduce to ∣∣∣∣δfyfy − δfx

fx

∣∣∣∣� fx
rzfy|px − x0|

(SM13)∣∣∣∣δfyfy − δfx
fx

∣∣∣∣� fy
rzfx|py − y0|

If fy and fx are of similar magnitudes, and x0 ≈ w/2,
y0 ≈ h/2, Eq. SM13 reduces to∣∣∣∣δfyfy − δfx

fx

∣∣∣∣� 2

wrz
(SM14)∣∣∣∣δfyfy − δfx

fx

∣∣∣∣� 2

hrz

We learn from Eqs. SM13 and SM14 that rotations along z:
• Constrain the ratio between fx and fy
• Do not otherwise provide a supervision signal for the

magnitudes of the f -s
• The strength of the supervision signal is inversely pro-

portional to the magnitude of the rotation and the
height / width of the image in pixels.

Rotations around the y axis If only ry is nonzero,
Eqs. SM11 and SM12, along with |δp′x| � 1 and |δp′y| � 1
reduce to

|δfx| �
f2x

2ry(px − x0)2
(SM15)

|δfx| �
f2x

2ry|py − y0||px − x0|

Just like before, the pixels that are farthest away from the
center provide the tightest bound on |δfx|. If x0 ≈ w/2,
y0 ≈ h/2, Eq. SM15 leads to

|δfx| � min

(
2f2x
ryw2

,
2f2x
rywh

)
We learn from Eqs. SM15 and SM16 that rotations along y:
• Provide a supervision signal for fx
• The magnitude of the supervision signal is inversely

proportional to the magnitude of the rotation and
height / width of the image in pixels squared.

Since rotations around the x axis lead to an expression
identical to Eq. SM16 with x and y swapped and w and h
swapped, this concludes the derivation of Eq. 3.

A.2. The motion- and intrinsics-prediction network

A schematic of the network is shown in Fig. 2 in the main
paper. A stack of convolutions with stride 2 (the“encoder”),
with average pooling in the last one, forms a bottleneck of
1024 channels with a 1x1 spatial resolution. From the bot-
tleneck, the following heads stem:
• A fully-connected layer with 3 outputs each predict the

global rotation angles (r0) and the global translation
vector (t0). The latter two represent the movement of
the entire scene with respect to the camera, due to cam-
era motion.
• Each of the intrinsic parameters is predicted by

a 1x1 convolution. Softplus activations keep
the focal lengths positive and the distortion curve
monotonically-increasing.
• A stack of decoder layers predicts a dense residual

translation vector field δt(x, y), with 3 output chan-
nels, representing the 3D movement of each pixel with
respect to the scene. Each decoder layer receives as
input the outputs of the previous decoder layer and the
outputs of the corresponding encoder layer following
the UNet architecture.

For the results shown in Table 5, instead of predicting the
intrinsic parameters from the network, each of the parame-
ters listed in 5 was assigned a separate trainable variable.
This is a way to incorporate the constraint that the intrinsics
should be the same for all training example, since entire
EuRoC dataset was captured with the same camera. The
distortion variables were initialized to zero, x0 and fx were
initialized to w/2, and y0 and fy are initialized to h/2.

Method M Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Zhou [47] 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Yang [42] 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian [24] 0.163 1.240 6.220 0.250 0.762 0.916 0.968
LEGO [41] X 0.162 1.352 6.276 0.252 0.783 0.921 0.969
GeoNet [44] X 0.155 1.296 5.857 0.233 0.793 0.931 0.973
DDVO [35] 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Godard [13] 0.133 1.158 5.370 0.208 0.841 0.949 0.978
Struct2Depth [6] X 0.141 1.026 5.291 0.2153 0.8160 0.9452 0.9791
Yang [40] 0.137 1.326 6.232 0.224 0.806 0.927 0.973
Yang [40] X 0.131 1.254 6.117 0.220 0.826 0.931 0.973
Ours:
Given intrinsics X 0.129 0.982 5.23 0.213 0.840 0.945 0.976
Learned intrinsics X 0.128 0.959 5.23 0.212 0.845 0.947 0.976

Table SM1. Evaluation of depth estimation of our method, with given and learned camera intrinsics, for models trained and evaluated on
KITTI, compared to other monocular methods. The depth cutoff is always 80m. The “M” column is checked for all models where object
motion is taken into account. This extends Table 1 in the main paper.

Method M Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Pilzer [27] 0.440 5.71 5.44 0.398 0.730 0.887 0.944
Struct2Depth [6] X 0.145 1.74 7.28 0.205 0.813 0.942 0.978
Ours:
Given intrinsics X 0.129 1.35 6.96 0.198 0.827 0.945 0.980
Learned intrsinsics X 0.127 1.33 6.96 0.195 0.830 0.947 0.981

Table SM2. Evaluation of depth estimation of models trained on Cityscapes on the cityscapes test set using the procedure and code in
Ref. [6], with a depth cutoff of 80m, and comparison to prior art. This table extends Table 2 from the main paper.

Trained on Evaluated on Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Cityscapes Cityscapes 0.127 1.33 6.96 0.195 0.830 0.947 0.981
Cityscapes KITTI 0.172 1.37 6.21 0.250 0.754 0.921 0.967
KITTI Cityscapes 0.167 2.31 9.99 0.272 0.747 0.894 0.957
KITTI KITTI 0.128 0.959 5.23 0.212 0.845 0.947 0.976
Cityscapes + KITTI Cityscapes 0.121 1.31 6.92 0.189 0.846 0.953 0.983
Cityscapes + KITTI KITTI 0.124 0.930 5.12 0.206 0.851 0.950 0.978

Table SM3. Evaluation of depth estimation of models trained on Cityscapes and KITTI together, on the Cityscapes and KITTI test sets
separately. The depth cutoff is of 80m. This table extends Figure 5 in the main paper.

The code is at github.com/google-research/google-
research/tree/master/depth from video in the wild.

A.3. Full tables of metrics for depth estimation

The numbers in Table 1 and 2, as well as in Fig. 5, are
given for only part of the metrics commonly published for
depth estimation. In this section we give the rest of the met-
rics, for completeness. Tables SM1, SM2 and SM3 provide
the full set of numbers for the former ones, respectively.

A.4. Further details about the losses

Structural Similarity (SSIM) As explained in Sec. 4.2
and Fig. 3, when warping one frame onto the other, the
depth map can become mutivalued, which indicates newly-
occluded areas. In a multivalued depth map, we need to
pick the branch that is closer to the camera when demand-
ing consistency.

Calculating SSIM involves calculating the mean, vari-
ance and covariance of image patches (the formula is given
at en.wikipedia.org/wiki/Structural similarity). For exam-
ple, the mean of 3x3 image patch would be

µ =
1

9

i=1,j=1∑
i=−1,j=−1

Iij , (SM16)

where Iij is the pixel value of one of the channels of the
image.

We replace Eq. by a weighted average:

µ =

∑i=1,j=1
i=−1,j=−1 wijIij∑i=1,j=1
i=−1,j=−1 wij

, , (SM17)

where wij is a positive weight function. The weight func-
tion we used was

wij =
1

1 + (zij − z′ij)2/〈(z − z′)2〉
, (SM18)

https://github.com/google-research/google-research/tree/master/depth_from_video_in_the_wild
https://github.com/google-research/google-research/tree/master/depth_from_video_in_the_wild
https://en.wikipedia.org/wiki/Structural_similarity

where zij is the predicted depth at the pixel at i, j and z′ij is
the transformed depth from the other frame, interpolated to
i, j. 〈·〉 denotes an average over the entire image.

In words, Eq. SM17 downweighs the contribution of pix-
els where the depth reprojection error is greater than the root
mean square depth reprojection error calculated over the en-
tire image. The rationale is that if the depth reprojection
error is large, the point more likely belongs to the occluded
branch of a multivalued depth map.

The same weighing is applied for the other statistics
(variances and covariances) calculated in the SSIM formula.
Other losses The RGBD consistency losses, SSIM loss
and motion cycle consistency losses are implemented in
the consistency lossses.py file in our repository.
The smoothing losses the weights of all the losses are in
model.py.

A.5. Generating depth groundtruth for the EuRoC
dataset

In the EuRoC dataset, the Vicon Room 2 series has point-
clouds that were obtained from merging depth sensor read-
ings. In addition, there is groundtruth for the position and
orientation of the camera at given timestamps, as well as
the intrinsics. For every frame, we reprojected the point
clouds onto the camera using the intrinsics and extrinsics.
To address occlusions, each point was given some finite an-
gular width. If two 3D points were projected onto close
enough locations on the image plane, and their depth ratio
was greater than a certain threshold, only the one closer to
the camera was kept. Finally, the rendered depth maps were
made more uniform by introducing a uniform grid in pro-
jective space and keeping at most one point in a each cell.
An example of the result is shown in Fig. SM2.

A.6. YouTube8M IDs of used for training

The YouTube8M IDs are listed below:
1ofm 2Ffk 2Gc7 2hdG 4Kdy 4gbW 70eK 77cq
7We1 8Eff 8W2O 8bfg 9q4L A8cd AHdn Ai8q
B8fJ BfeT C23C C4be CP6A EOdA Gu4d IdeB
Ixfs Kndm L1fF M28T M92S NSbx NSfl NT57
Q33E Qu62 U4eP UCeG VRdE W0ch WU6A WWdu
WY2M XUeS YLcc YkfI ZacY aW8r bRbL d79L
d9bU eEei ePaw iOdz iXev j42G j97W k7fi
kxe2 lIbd lWeZ mw3B nLd8 olfE qQ8k qS6J
sFb2 si9H uofG yPeZ zger

The YouTube8M website3 provides the instructions for
mapping them you YouTube IDs. Two consecitive frames
were sampled off of each video every second.

3 research.google.com/youtube8m/

Figure SM2. Illustration of a depth map (below) generated from
the EuRoC point cloud of Vicon Room 2, by projecting onto the
view of the RGB camera (above).

A.7. Intrinsics tranformation on the EuRoC dataset

The intrinsics of cam0 in the EuRoC set are (752, 480)
for the width and height, 458.654, 457.296 for the focal
lengths in the x and y direction respectively, and 367.215,
248.375 for x0 and y0 respectively. The radial distortion co-
efficients are -0.28340811 and 0.07395907, and the higher-
order coefficients are small. In our experiments, we first
center-cropped the images to (704, 448). This does not
change the focal lengths nor the distortion coefficients, and
changes x0 and y0 to 343.215, 232.375 respectively. Next,
we resized the images to (384, 256), which multiplies all x-
related parameters by 384/704, and all y-related parameters
by 256/448. The results are in the last column of Table 5.

A.8. Odometry

The KITTI Sequence 10 is shown in Figure SM3. Tables
SM4 and SM5 extend Table 6 with more metrics.

https://github.com/google-research/google-research/blob/master/depth_from_video_in_the_wild/consistency_losses.py
https://github.com/google-research/google-research/blob/master/depth_from_video_in_the_wild/model.py
https://research.google.com/youtube8m/

−100 0 100 200 300 400 500 600 700
x (meters)

−50

0

50

100

150

200

250

300

z
(m

e
te

rs
)

KITTI Sequence 10

Given intrinsics

Learned and corrected intrinsics

Learned intrinsics

struct2depth

Groundtruth

Figure SM3. Predicted location on the KITTI odometry sequence
10 (the counterpart of Fig. 10 from the main paper), by a model
trained with given intrinsics, a model that learned the intrinsics,
and the latter model with inference time correction applied. The
groundtruth and the struct2depth [6] results are displayed as well.

Method Seq. 09 Seq. 10
Zhou [47] 0.021± 0.017 0.020± 0.015
Mahjourian [24] 0.013± 0.010 0.012± 0.011
GeoNet [44] 0.012± 0.007 0.012± 0.009
Godard [13] 0.023± 0.013 0.018± 0.014
Struct2depth [6] 0.011± 0.006 0.011± 0.010

Ours, with intrinsics:
Given 0.009± 0.015 0.008 ±0.011
Learned 0.012 ±0.016 0.010 ±0.010
Learned & corrected 0.010 ±0.016 0.007± 0.009

Table SM4. 5-point Absolute Trajectory Error, (ATE) calculated
following the procedure outlined in [47]. The three variants of our
method are a model trained with given intrinsics, a model trained
with learned intrinsics, and the latter model with test-time correc-
tion of the intrinsics. The trajectories are shown in (Fig. 10 and
Fig. SM3). This table extends Table 6 in the main paper.

Seq. 09 Seq. 10
Method trel rrel trel rrel
Zhou [47] a la [46] 17.8 6.78 37.9 17.8
Zhou [47] a la [31] 21.63 3.57 20.5 10.9
Zhan [46] 11.9 3.60 12.6 3.43
Struct2depth [6] 10.2 2.64 29.0 4.28
Ours, with intrinsics:
Given 3.18 0.586 5.38 1.03
Learned 7.47 0.960 13.2 3.09
Learned & corrected 2.70 0.462 6.87 1.36

Table SM5. Average relative translation error (trel, in percents)
and average relative rotation error (rrel, degrees per 100 meters)
calculated on the KITTI odometry sequences 09 and 10. The re-
sults for the method in Zhou et al. [47] were taken from two dif-
ferent evaluations [31, 46]. The number for Struct2depth [6] were
evaluated using their published code and models. As in prior work,
[31, 46] the metrics are calculated starting after the first 100 me-
ters. This table extends Table 6 in the main paper.

