
Surface Networks via General Covers - Supplementary Material

Figure 1: A topological torus (textured image, left) covers a human model 5 times (middle). This cover is constructed out of 5
copies of the model stitched to form a topological torus (middle). The map from the flat torus (left) to the cover is visualized
using a colored checkerboard. Since the 5 copies form a torus, up/down/right/left translations are well-defined everywhere
on the cover. The standard image convolution is invariant to these translations over the surface (see right insets where the
convolution kernel moves seamlessly between copies of the model).

1. Convolution on a spherical mesh

In Figure 1 we depict a cover map from the torus (tex-
ture square image on the left) to a human surface (middle);
this map covers the human 5 times. We further show how
standard convolution stencil (in yellow) translates to a seam-
less convolution on the surface. Note that the texture seams
on the human models are pretty arbitrary and just indicate
when moving to a different copy of the surface.

2. Guidelines on Choosing parameters

Adding branch points helps reducing the local distortion
in protruding parts, therefore we recommend to choose as
many branch points as there are protruding parts common
in the dataset (e.g. 5 for humans, 8 for octopuses etc.). As
we mentioned in section 4.1.1 we choose a ramification type
of the form [[r, 1d−r]] for each branch point.

As noted in Section 4.1.1, higher ramification (r) also im-
proves area distortion of protruding parts. However, in that
case, we are limited by the RH formula ((6)). So we would
recommend choosing the highest r possible (e.g. as appears
in Table 1) and taking d (number of copies) to satisfy (6).
Also note that higher r implies higher d (number of copies).
Therefore, for a fixed image resolution we would like the
highest number of branch points for which all relevant parts
are still visible in the image.

3. Gluing Instructions

As mentioned in Section 4.1.1, for each choice of num-
ber of branch points k , degree d and ramification type ρ sat-
isfying Equations (5) and (6) We need to compute a product
one tuple of permutations satisfying the conditions of the-
orem 1. We note that this computation can be done in an
offline step, before using Algorithm 1 to compute the toric
parameterization. In Table 1 We provide gluing instructions
corresponding to each valid choice of k ≤ 6, d ≤ 10 and ρ
that complies with Equations (5) and (6). Each of the gluing
instructions in Table 1 can be used as input to Algorithm (1).

4. Implementation Details

Learning. We use Pytorch [5] for learning. All the ex-
periments are done with toric images generated by our al-
gorithm and off-the-shelf CNN architectures with a single
change: we replace the standard zero padding with periodic
padding.

Data generation. For the surface segmentation task
we use a cover of the type ρ =

[
[15, 5]5

]
, that is,

ρi = [15, 5], i ∈ [5]. For the spherical learning tasks
(shape retrieval and classification) we use a cover of type
ρi = [1, 2], i ∈ [6]. The locations of the branch points are
chosen using farthest points sampling. We use the shortest

1

k d ρ Gluing instructions

3 3
[
[3]

3
]

(1, 2, 3) , (1, 2, 3) , (1, 2, 3)

3 6
[
[1, 5]

3
]

(1, 2, 3, 4, 5), (1, 3, 4, 6, 2), (2, 6, 3, 5, 4)

3 9
[[
12, 7

]3]
(1, 2, 3, 4, 5, 6, 7), (1, 7, 6, 2, 3, 8, 9), (1, 9, 8, 2, 5, 4, 3)

4 2
[
[2]

4
]

(1, 2) , (1, 2) , (1, 2) , (1, 2)

4 4
[
[1, 3]

4
]

(1, 2, 3), (2, 3, 4), (1, 2, 4), (1, 2, 3)

4 6
[[
12, 4

]4]
(1, 2, 3, 4), (2, 5, 4, 3), (1, 5, 6, 4), (1, 5, 4, 6)

4 8
[[
13, 5

]4]
(1, 2, 3, 4, 5), (3, 6, 8, 5, 4), (1, 5, 4, 7, 2), (2, 7, 4, 8, 6)

4 10
[[
14, 6

]4]
(1, 2, 3, 4, 5, 6), (1, 7, 8, 3, 5, 9), (2, 10, 8, 7, 6, 5), (1, 9, 4, 3, 8, 10)

5 5
[[
12, 3

]5]
(3, 4, 5) , (2, 3, 5) , (1, 5, 2) , (1, 2, 5) , (2, 4, 3)

5 10
[[
15, 5

]5]
(6, 7, 8, 9, 10) , (1, 7, 3, 4, 9) , (1, 8, 4, 3, 7) , (2, 5, 4, 7, 6) , (2, 10, 9, 4, 5)

6 6
[[
13, 3

]6]
(1, 2, 3), (2, 5, 3), (3, 6, 5), (3, 5, 6), (1, 4, 5), (3, 5, 4)

6 9
[[
15, 4

]6]
(1, 9, 3, 5), (1, 7, 8, 4), (3, 7, 5, 6), (4, 8, 7, 9), (1, 3, 6, 2)

Table 1: Gluing instructions for choices of k, d, ρ

paths from an arbitrary base point to all branch points in or-
der to cut the mesh. When the mesh does not allow such
a path we subdivide it locally (without changing its geome-
try). This pre-processing step is implemented in Matlab. It
takes ∼ 22 seconds in average (relatively long running time
due to a non-optimized mesh cutting code in Matlab) to gen-
erate a periodic (toric) image for a mesh with 6890 vertices
on a single CPU core in an Intel(R) Xeon(R) CPU E5-2670
v3 @ 2.30GHz machine.

4.1. Segmentation Task

Prediction. The network outputs per-pixel labels. In or-
der to obtain a label for each face in the original mesh M ,
we first transfer the per-pixel logits to the faces FT of the
toric mesh using bilinear interpolation sampled at the faces’
centers. Since each face f in M has d duplicated faces in the
toric mesh T (|Ψ−1(f)| = d), each face f in M has d sets
of logits. We use a weighted average of the d sets of logits,
where the weights are the area scales of the faces Ψ−1(f).
The label of f is the argmax of this weighted-average of log-
its. This means that better scaled faces (in the toric mesh)
receive more weight when deciding how to label a face in
the original mesh M .

Architecture. We use a version of a U-Net [7]. The
feature-channels sizes are given in Table 2. After each con-
volution we use ReLU with a Batch-Normalization layer
[4]. Each UpSample layer is a nearest-neighbour interpola-

tion with scale-factor 2.

5. Proofs

5.1. RiemannHurwitz formula

Consider a branched covering map E : T → M of
degree d and k branch points, from a toric mesh T =
(VT , ET , FT) to a spherical mesh M = (VM , EM , FM).
We prove that the ramification type of E must satisfy the
Riemann-Hurwitz formula (3).

Proof of Riemann-Hurwitz formula. First, we note that the
set of branch points B = {b1, . . . bk} can always be chosen
from VM .

Every node v ∈ VM \ B has d pre-images in VT . How-
ever, a branch point bi has li < d pre-images in VT . Ev-
ery edge e ∈ EM has exactly d pre-images in ET , that is
|ET | = d|EM |. Similarly, |FT | = d|FM |.

By computing the Euler characteristic for a toric surface:

0 = χ(T) = |VT | − |ET |+ |FT |

= d (|VM | − |EM |+ |FM |)︸ ︷︷ ︸
χ(M)

−
k∑

i=1

(d− li)

= 2d−
k∑

i=1

(d− li)

(1)

2

Using
li∑

j=1

ri,j = d (2)

and rewriting we obtain the Riemann-Hurwitz formula
(RH), in its version for a map from a toric surface to a spher-
ical surface:

k∑
i=1

li∑
j=1

(ri,j − 1) = 2d (3)

5.2. Proof of Theorem 1

We recall the following topological facts. A degree d
branched covering map E : T → M from a torus to a genus
0 surface induces a group homomorphism, called the mon-
odromy representation, from π1, the fundamental group of
M \ {b1, . . . , bk} to Sd.

The homomorphism is given as follows: We take each
loop l ∈ π1, based at a point p, and lift it to T starting from
a preimage of p. This lift has to end at another preimage of p.
Due to properties of the lifting, this induces a permutation
on the preimages of p in T , referred to as the fiber of p.

The group π1 has k generators and a single relation. The
generators, l1 . . . , lk, are the k loops around each of the
branch points. The relation is l1 ∗ . . . ∗ lk = 1.

Our gluing instructions, σ1, . . . , σk, will be the images
of l1, . . . , lk under the monodromy representation. We shall
now give a proof of Theorem 1 . Namely, that our algorithm
produces a cover T → M with ramification ρ if and only if
the gluing instructions are a tuple of permutations satisfying
the conditions of Theorem 1.

Proof of Theorem 1. First we prove that the conditions in
the theorem are necessary.

For (i), we note that a lift of a loop around a branch
point li with a particular ramification structure induces a
permutation with the same cycle structure.
For (ii), the fact that l1 ∗ . . . ∗ lk = 1, implies (using group
homomorphism) that σ1 · . . . · σk = Id.
For (iii), fix p1, p2 in the fiber of p. Since T is connected,
there exists a path γ connecting p1 and p2. The loop E ◦ γ
is a loop starting and ending at p whose lift takes p1 to p2.
Thus, the action of group generated by Σ = {σ1, . . . , σn}
is transitive.

Conversely, suppose we have a product one tuple
σ1, . . . , σk satisfying the conditions of the theorem and k
branch points b1, . . . , bk. Then condition (i) allows us to
define an action of the group H := ⟨σ1, σ2, . . . , σk⟩ on
[d]. Following the construction in [3] pg 68-70 the space
U×[d]/π1×H is a covering space of M , where U is the univer-
sal cover of M . The transitivity of H implies that this cov-
ering space C is connected. Condition (iii) implies by the
Riemann-Hurwitz formula that C is topologically a torus.

Let D be the space produced from Algorithm 1. Note
that the construction in Algorithm 1 implies that lifting a
loop circling each branch point bi induces the permutation
σi on the fiber of a generic point. Thus, the action of π1

on D coincides with the action of π1 on C. Since every
action of π1 on [d] (up to conjugation) produces a unique
(up to homeomorphism) covering space, we deduce that D
is homeomorphic to C.

Comment: The equivalence between branched covering
maps and tuples of permutations satisfying the conditions of
Theorem 1 is well known. This equivalence is commonly re-
ferred to as Riemann’s existence theorem (RET). However,
to the best of our knowledge, it was previously not known
how to practically construct any given branched covering
map (our Algorithm 1).

6. Gluing Instructions
We now turn to describing an algorithm that finds tuples

of permutations σ1, . . . , σk ∈ Sd, corresponding to a pre-
scribed ramification structure ρ, up to simultaneous conju-
gation (relabeling of the branch points). We call such a tu-
ple a product one tuple. We implement our algorithm using
Magma computational algebra system [2].

We denote the conjugacy class in Sd associated with the
cycle structure of ρi by Ci. In the algorithm construction
we use the following:

Claim 1. 1. ⟨σ1, σ2, . . . , σk−1⟩ is a transitive permu-
tation group and Πk−1

i=1 σi ∈ Cn, if and only if
σ1, σ2, . . . , σk, where σk = (σ1σ2 · · ·σk−1)

−1 is a
transitive product one tuple with σk ∈ Ck.

2. The set {σ1, . . . , σi} can be completed to a transitive
product one tuple compatible with a ramification struc-
ture ρ if and only if

{
σ1, . . . , σi−1, gσig

−1
}

, for any
g ∈ Z(σ1, . . . , σi−1) (Z denotes the centralizer), can
be completed to a transitive product one tuple compat-
ible with ρ.

Proof. (1) follows from the observations that adding ele-
ments to a transitive generator set keeps the set transitive,
and that for g ∈ Sd the cycle structure of g and g−1 are
the same. For (2), note that for any g ∈ Z (σ1, . . . , σi−1)
and j ∈ [i− 1] it holds that gσjg

−1 = σj . Thus, for
any g ∈ Z (σ1, . . . , σi−1), we have that any tuple with
σ1, . . . , σi is the same as a tuple with gσ1g

−1, . . . , gσig
−1,

up to simultaneous conjugation.

The main idea in the algorithm for finding all gluing in-
structions corresponding to a ramification type ρ is to ex-
haustively go over all tuples σi ∈ Ci and check whether
they form a product one tuple. We use the claim above to

3

prune this exhaustive search, as described in Algorithm 2.
Note that this computation is done once for a given cover
ramification type and is reused for all models using this type
of cover.

Data: a ramification structure ρ = (ρ1, . . . , ρk)
Result: all gluing instructions Σ compatible with ρ
Pick σ1 ∈ C1

Call the recursive function tuplesFinder(ρ,σ1)

tuplesFinder(ρ, {σ1, . . . , σi})
while Ci ̸= ∅ do

pick σi ∈ Ci

update Ci = Ci \
Z(σ1, σ2, . . . , σi−1)σiZ(σ1, σ2, . . . , σi−1)

−1

if i = n− 1 then
if Πn−1

i=1 σi and σn are conjugates and
⟨σ1, σ2, . . . , σn−1⟩ is transitive then

add σ1, σ2, . . . , σk to list of product one
tuples

end
else

call tuplesFinder(ρ, {σ1, σ2, . . . , σi})
end

end
Algorithm 2: Finding gluing instructions.

7. Orbifold-Tutte embedding of T
We compute x by solving a sparse linear system follow-

ing [1]:
Ax = b (4)

Here A ∈ Rm×m and x, b ∈ Rm×2, where m is the num-
ber of vertices in the disk-like mesh Tdisk. The linear sys-
tem (4) is constructed by putting together four sets of linear
equations as follows:

First, for all interior vertices we set the discrete harmonic
equation: ∑

u∈Nv

wvu (xv − xu) = 0 (5)

where Nv is the set of vertices in VTdisk
adjacent to v and

wuv are the cotangent weights [6].
Let L1 and L2 be the generators of the homotopy group

of T . Denote by v0 ∈ VT the intersection of the two
loops L1 and L2 . In Tdisk, the vertex v0 has four copies
v′1, v

′
2, v

′
3, v

′
4. next, we ensure that these four copies are

mapped to the four corners of the unit square [0, 1]2. Ex-
plicitly,

v′1 = [0, 0]T , v′2 = [1, 0]T , v′3 = [1, 1]T , v′4 = [1, 0]T (6)

Each vertex v ∈ ∂VTdisk
\ {v′1, v′2, v′3, v′4} has a twin vertex

ṽ such that v and ṽ correspond to the same vertex in the

uncut mesh T . Moreover, each such vertex v has its origin
in VT either in L1 or in L2.

We set the vertices whose origin is in L1 to be different
by a constant translation in [0, 1]T and the vertices whose
origin is in L2 to be different by a constant translation in
[1, 0]T . Namely:

ṽ − v = a (7)

where v and ṽ are twins, and a is either [0, 1]T or [1, 0]T ,
depending on whether the origin of v belongs to L1 or L2.

Finally we set each vertex v ∈ ∂VTdisk
\ {v′1, v′2, v′3, v′4}

to be the weighted average of both its neighbors and the
translated neighbors of its twin.∑
u∈N(v)

wuv(xv−xu)+
∑

u∈N(ṽ)

wuṽ(xṽ−xu+a) = 0 (8)

with a as before.

References
[1] Noam Aigerman and Yaron Lipman. Orbifold tutte embed-

dings. ACM Trans. Graph., 34(6):190–1, 2015.
[2] MAGMA Group et al. Magma computational algebra system,

version 2.22-7, sydney. 2016.
[3] Allen Hatcher. Algebraic topology. Cambridge Univ. Press,

Cambridge, 2000.
[4] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-

celerating deep network training by reducing internal covari-
ate shift. arXiv preprint arXiv:1502.03167, 2015.

[5] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in pytorch. 2017.

[6] Ulrich Pinkall and Konrad Polthier. Computing discrete mini-
mal surfaces and their conjugates. Experimental mathematics,
2(1):15–36, 1993.

[7] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015.

4

Table 2: Channel sizes of our U-Net architecture for surface segmentation

Spatial Dimensions Layer kernel size # input channels # output channels

512 x 512 Conv2d 5 3 128
Conv2d 3 128 128
MaxPool2d 2

256 x 256 Conv2d 3 128 128
Conv2d 3 128 128
MaxPool2d 2

128 x 128 Conv2d 3 128 128
MaxPool2d 2

64 x 64 Conv2d 3 128 256
MaxPool2d 2

32 x 32 Conv2d 3 256 512
MaxPool2d 2

16 x 16 Conv2d 3 512 512
Conv2d 3 512 512
UpSample

32 x 32 Conv2d 3 1024 256
Conv2d 3 256 256
UpSample

64 x 64 Conv2d 3 512 128
UpSample

128 x 128 Conv2d 3 256 128
UpSample

256 x 256 Conv2d 3 256 128
UpSample
Conv2d 3 256 128

512 x 512 Conv2d 1 128 8

5

