
Supplementary Material
A. Proof

This appendix collects all the proofs omitted from the main text.

A.1. Proof of Theorem 1

This section provides a detailed proof for Theorem 1, which is ommitted from the main text. We first recall two lemmas
by Bartlett et al. [32] .

Lemma 3 (cf. [32], Lemma A.7). Suppose there are L weight matrices in a chain-like neural network. Let (ε1, . . . , εL) be
given. Suppose the L weight matrices (A1, . . . , AL) lies in B1 × . . . × BL, where Bi is a ball centered at 0 with the radius
of si, i.e., Bi = {Ai : ‖Ai‖ ≤ si}. Furthermore, suppose the input data matrix X is restricted in a ball centred at 0 with the
radius of B, i.e., ‖X‖ ≤ B. Suppose F is a hypothesis function computed by the neural network. If we define:

H = {F (X) : Ai ∈ Bi, Au,v,st ∈ Bu,v,st } , (A.1)

where i = 1, . . . , L, (u, v, s) ∈ IV , and t ∈ {1, . . . , Lu,v,s}. Let ε =
∑L
j=1 εjρj

∏L
l=j+1 ρlsl. Then we have the following

inequality:

N (H) ≤
L∏
i=1

sup
Ai−1∈Bi−1

Ni , (A.2)

where Ai−1 = (A1, . . . , Ai−1), Bi−1 = B1 × . . .× Bi−1, and

Ni = N
({
AiFAi−1

(X) : Ai ∈ Bi
}
εi, ‖ · ‖

)
. (A.3)

Here, the radius of each covers are respectively,

εi =
αiε

ρi
∏
j>i ρjsj

, (A.4)

where

αi =
1

ᾱ

(
bi
si

)2/3

, (A.5)

ᾱ =

L∑
j=1

(
bj
sj

)2/3

. (A.6)

This lemma gives an upper bound on the covering number of the hypothesis space of any chain-like neural network.

Lemma 4 (cf. [32], Lemma 3.2). Let conjugate exponents (p, q) and (r, s) be given with p ≤ 2, as well as positive reals
(a, b, ε) and positive integer m. Let matrix X ∈ Rn×d be given with ‖X‖p ≤ b. Let HA denote the family of matrices
obtained by evaluating X with all choices of matrix A:

HA ,
{
XA|A ∈ Rd×m, ‖A‖q,s ≤ a

}
. (A.7)

Then

logN (HA, ε, ‖ · ‖2) ≤
⌈
a2b2m2/r

ε2

⌉
log(2dm) . (A.8)

This lemma gives an upper bound on the covering number of the hypothesis space contributed by a single weight matrix.
Based on Lemmas 3 and 4, we can further obtain the proof for Theorem 1.

Proof of Theorem 1. Suppose the hypothesis spaces of the output functions F(A1,...,Ai) of the weight matrices Ai, i =
1, . . . , 8 are respectively Hi, i = 1, . . . , 8, and the corresponding covering number is Ni. From Lemma 3, we can directly
get the following inequality,

logN (H)

≤ log

(
8∏
i=1

sup
Ai∈Bi−1

Ni

)

≤
8∑
i=1

log

 sup
(A1,...,Ai)
∀j<i,Aj∈Bj

N
({
AiF(A1,...,Ai)

}
, εi, ‖ · ‖2

) . (A.9)

Employ eq. (A.8), we can get the following inequality,

logN (H) ≤
8∑
i=1

b2i ‖F(A1,...,Ai)(X)‖2σ
ε2
i

log
(
2W 2

)
. (A.10)

Meanwhile,

‖F(A1,...,Ai)(X)‖σ =‖σi(AiF(A1,...,Ai−1)(X))− σi(0)‖2
≤‖σi‖‖AiF(A1,...,Ai−1)(X)− 0‖2
≤ρi‖Ai‖σ‖F(A1,...,Ai−1)(X)‖2
≤ρisi‖F(A1,...,Ai−1)(X)‖2. (A.11)

Therefore,

‖F(A1,...,Ai)(X)‖2σ ≤ ‖X‖2
i∏

j=1

s2
jρ

2
j . (A.12)

Applying eqs. (A.5) and (A.6),

logN (H) ≤
8∑
i=1

b2i ‖X‖2
∏i
j=1 s

2
jρ

2
j

ε2
i

log
(
2W 2

)
=

8∑
i=1

b2i ‖X‖2s2
8

∏7
j=1 s

2
jρ

2
j

ε2
i

log
(
2W 2

) 8∑
i=1

b2i
α2
i s

2
i

=

8∑
i=1

b2i ‖X‖2s2
8

∏7
j=1 s

2
jρ

2
j

ε2
i

log
(
2W 2

) (
ᾱ3
)

=

8∑
i=1

b2i ‖X‖2s2
8

∏7
j=1 s

2
jρ

2
j

ε2
i

log
(
2W 2

) 8∑
j=1

b
2/3
j

s
2/3
j

3

. (A.13)

The proof is completed.

A.2. Proof of Theorem 2

This section provides a detailed proof for Theorem 2, which is ommitted from the main text. We first recall a classic
result in learning theory which expresses the negative correlation between the generalization error of an algorithm and the
corresponding Rademacher complexity R̂(H) as the following lemma.

Lemma 5 (cf. [25], Theorem 3.1). For any δ > 0, with probability at least 1 − δ, the following inequality hold for all
Fθ ∈ H:

R(Fθ) ≤ R̂(Fθ) + 2R̂(l ◦ H) + 3

√
log 2

δ

2N
, (A.14)

where l ◦ H is defined as
l ◦ H , {l ◦ F : F ∈ H} . (A.15)

Computing the empirical Rademacher complexity of neural network could be extremely difficult and thus still remains an
open problem. Fortunately, the empirical Rademacher complexity can be upper bounded by the corresponding ε-covering
number N(H, ε, ‖ · ‖2) as the following lemma states.

Lemma 6 (cf. [32], Lemma A.5). Suppose 0 ∈ H, then

R(H) ≤ inf
α>0

(
4α√
n

+
12

n

∫ √n
α

√
logN (l ◦ H, ε, ‖ · ‖2)dε

)
. (A.16)

Proof of Theorem 2. Apply Lemma 6 directly to Theorem 1, we can get the following equation

R(H) ≤ inf
α>0

(
4α√
n

+
12

n

∫ √n
α

√
logN (Hλ|D, ε, ‖ · |2)dε

)

≤ inf
α>0

(
4α√
n

+
12

n

∫ √n
α

R

ε
dε

)

≤ inf
α>0

[
4α√
n

+
12

n

√
R log

(√
n

α

)]
. (A.17)

Apparently, the infinimum is reached uniquely at α = 3
√

R
n and the infinitum is as follows,

R(H) ≤12R

N

[
1 + log

(
N

3R

)]
. (A.18)

Apply eq. (A.18) to eq. (A.14) of Lemma 5, we can directly get the following equation,

R(Fθ) ≤ R̂(Fθ) +
24R

N

[
1 + log

(
N

3R

)]
+ 3

√
log 2

δ

2N
, (A.19)

which is exactly eq. (4.6).
The proof is completed.

B. Empirical Results

This appendix collects all empirical results omitted from the main text. Specifically, we provides some exmaples from the
datasets, an example implementation of SAML based on the cosine metric, additional illustrations of semantically relevant
local regions, studies on three other metrics, and comparison experiments with the state-of-the-art methods based on deeper
networks.

B.1. Examples from the Datasets

This section provides exemplary images from the two datasets used in the experiments as Figure 7.

B.2. An Example Implementation of SAML Based on the Cosine Metric

This section provides an example implementation of SAML based on the cosine metric as Figure 8.

B.3. Additional Illustrations of Semantically Relevant Local Regions

This section provides additional illustrations of semantically relevant local regions of a different category from the main
text as Figure 9.

CUB

miniImageNet

Figure 7. Some images from miniImageNet and CUB are shown for better understanding of datasets used in the experiments.

Support Feature Maps

Query Feature Maps

C x H x W

C x H x W

Reshape
C x HW

Reshape + Transpose

HW x C

Matrix
Multiplication

HW x HW

Relation Matrix

Figure 8. An example implementation of SAML based on the cosine metric.

Support Query

Figure 9. Illustrations of semantically relevant local regions. They demonstrate that the semantic alignment is realized by SAML.

B.4. Ablation Study of Metrics

Metrics can be induced by kernels. Specifically, kernel functions can first define inner products and then induce metrics.
This section gives ablation studies on three more metrics other than the two included in the main text, cosine and Gaussian.
They are respectively induced by the following three kernel functions.

Hyperbolic Tangent Kernel (HTK): It is defined as the following equation,

k(x, y) = tanh(αxT y + c) =
eαx

T y+c − e−αxT y−c

eαxT y+c + e−αxT y−c . (B.1)

Similarly, by replacing tanh with other nonlinear functions, such as ReLU and Sigmoid, we can get the following variants.
Non-Negative ReLU Kernel (NNRK): It is defined as the following equation,

k(x, y) = ReLU(αxT y + c) =

{
αxT y + c, αxT y + c > 0,

0, αxT y + c ≤ 0.
(B.2)

It is worth noting that this kernel is non-negative as its name suggests.
Non-Negative Sigmoid Kernel (NNSK): It is defined as the following equation,

k(x, y) = Sigmoid(αxT y + c) =
1

1 + e−αxT y−c . (B.3)

It is worth noting that this kernel is non-negative as its name suggests.
The experimental results of the ablation studies for these metrics are shown in Table 6 and Table 7 which are respective

conducted on datasets miniImageNet and CUB. Similar to cosine and Gaussian, the attentional versions of these metrics
perform much better than their non-attentional version. Also as shown in Table 6 and Table 7, our method SAML with
the three new metrics all significantly outperform the state-of-the-art methods (for more details, please refer to Table 4 and
Table 5 in the main text).

B.5. Comparisons with the State-of-the-art

All the exprimental results given in the main text is based on the embedding network adopted from a four-layer neural
network. We also conducted experiemnts on a much deeper network, WRN-28 [45]. SAML with the metric of cosine distance
still outperforms the state-of-the-art methods. Please see the results shown in Table 8.

Metric Functions 5way-1shot 5way-5shot
HTK 52.77±0.20% 68.83±0.16%

NNRK 53.93±0.20% 68.81±0.16%
NNSK 53.67±0.19% 69.16±0.47%

HTK + Attention 55.29±0.20% 71.54±0.16%
NNRK + Attention 55.84±0.20% 71.17±0.16%
NNSK + Attention 56.10±0.20% 71.51±0.16%

Table 6. The effect of different metric functions on the few-shot classification accuracies. Experiments are conducted on miniImageNet.

Metric Functions 5way-1shot 5way-5shot
HTK 63.61±0.22% 68.83±0.16%

NNRK 65.78±0.22% 79.62±0.16%
NNSK 64.12±0.23% 78.80±0.17%

HTK + Attention 70.05±0.22% 81.97±0.15%
NNRK + Attention 70.13±0.21% 81.38±0.16%
NNSK + Attention 69.67±0.21% 81.54±0.15%

Table 7. The effect of different metric functions on the few-shot classification accuracies. Experiments are conducted on CUB.

Model 5way-1shot 5way-5shot
Meta-SGD [22] 54.24±0.03% 70.86±0.04%

SNAIL [26] 55.71±0.99% 68.88±0.92%
Gidaris & Komodakis [10] 56.20±0.86% 73.00±0.64%

Matthias et al. [3] 56.30±0.40% 73.90±0.30%
Munkhdalai et al. [28] 57.10±0.70% 70.04±0.63%

TADAM [30] 58.50±0.30% 76.70±0.30%
Qiao et al. [33] 59.60±0.41% 73.74±0.19%

LEO [36] 61.76±0.08% 77.59±0.12%
SAML/cosine (ours) 61.86±0.20% 77.68±0.15%

Table 8. Few-shot classification accuracies on miniImageNet. Note that deeper networks are used here.

