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Our method enforces Proximal Relationships with Ob-
ject eXclusion and is called PROX. The figures below show
representative examples where the human body pose is esti-
mated with (gray color) and without (yellow color) our en-
vironmental terms. From the viewpoint of the camera, both
solutions look good and match the 2D image features but,
when placed in a scan of the 3D scene, the results without
environment constraints can be grossly inaccurate. Adding
our constraints to the optimization reduces inter-penetration
and encourages appropriate contact.

Why such constraints are not typically used? One key
reason is that to estimate and reason about contact and inter-
penetration, one needs both a model of the 3D scene and a
realistic model of the human body. The former is easy to
obtain today with many scanning technologies but, if the
body model is not accurate, it does not make sense to rea-
son about contact and inter-penetration. Consequently we
use the SMPL-X body model [3], which is realistic enough
to serve as a “proxy” for the real human in the 3D scene.
In particular, the feet, hands, and body of the model have
realistic shape and degrees of freedom.

Is it realistic to assume a 3D scene for refining pose?
Here we assume that a rough 3D model of the scene is avail-
able; one could argue that this is a hard assumption. Re-
constructing a 3D scene from a single RGB image is a hot
research topic, but the problem is ill-posed and currently un-
solved. Here we want to show in the first place that knowl-
edge about the scene helps pose estimation. Our results sup-
port this hypothesis, and scanning a scene today is quite
easy. Our next step is to relax this assumption, and move
to the more difficult problem of exploiting recent deep net-
works to estimate the scene directly from monocular RGB
images. There are now good methods to infer depth maps
from a single image [!] as well as methods that do more
semantic analysis and estimate 3D CAD models of the ob-
jects in the scene [2]. Our work is complementary to this di-
rection and we believe that monocular 3D scene estimation
and monocular 3D human pose estimation should happen
together. The work here provides a clear example of why
this is valuable.

Qualitative Results - Our Dataset

Figures A.1-A.3 show additional qualitative results for
our method (light gray) on our PROX dataset and compare
it to the RGB-only baseline (yellow). For each example we
show from left to right: (1) RGB image, (2) renderings from
different viewpoints.

Qualitative Results - PiGraphs

Figure A.4 shows additional qualitative results for our
method (light gray) on the PiGraphs dataset [4] and com-
pare it to the RGB-only baseline (yellow). Please note that
[4] estimate just a 3D skeleton of only the major body joints.
In contrast, we estimate a full 3D mesh, and include fa-
cial expressions and finger articulation. The mesh represen-
tation of our realistic human model helps to better reason
about proximity to the world, contact and penetrations. For
each example we show from left to right: (1) RGB image,
(2) renderings from different viewpoints.

Computational Complexity

Table A.1 reports the average runtime for all our config-
urations (PROX in bold) for 10 randomly sampled frames.
Compared to using RGB alone; PROX improved “V2V” by
24% with a runtime increase of 41%.
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Table A.1: Runtime for all configurations of our approach.

Choice of Contact Vertices

We choose the body vertices that often come in contact
with the 3D world. This choice is not exclusive. Table
A.2 evaluates different sets of candidate contact vertices,
namely our annotations and all vertices. Performance dete-
riorates in the latter case, while runtime increases by ~ 7
seconds. This suggests the importance of affordances and



semantics; future work can learn the likely contact vertices
for different object classes in a data-driven fashion. To this
end, the community first needs training data similar to the
data generated by our work.

[ Contact vertices || PJE | V2V [p.PIE[p.V2V]

Selected of Fig. 2||208.03(208.57(72.76| 60.95 @
All selected ||217.82|216.62(72.35|60.16 @

Table A.2: Different sets of candidate contact vertices.

Failure Cases

Figures A.5-A.6 show failure cases of our method (light
gray) on our PROX dataset. For each example we show
from left to right: (1) RGB image, (2) OpenPose result over-
layed on the RGB image, (3) result of our method. Figure
A.5-top shows that our method still results in some penetra-
tion. Our assumption of a static scene is not always true; in
this case the bed is deformable and its shape changes during
interaction. In future work we plan to model deformations
of the human body and the world. Figure A.5-bottom shows
a failure of our inter-penetration term. In cases where ini-
tialization of body translation is not accurate enough, the
optimizer might end up in a local minimum that is not al-
ways in agreement with the real pose in 3D space. Fig-
ure A.6 shows typical failure cases of OpenPose. In Figure
A.6-top the left leg is not detected correctly, while in Figure
A.6-middle and Figure A.6-bottom several body joints are
flipped by OpenPose.
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Figure A.1: Qualitative results on our PROX dataset. The human body pose is estimated with (light gray) and without
(yellow) our environmental terms. We show from left to right: (1) RGB images, (2) renderings from different viewpoints.



Figure A.2: Qualitative results on our PROX dataset. The human body pose is estimated with (light gray) and without
(yellow) our environmental terms. We show from left to right: (1) RGB images, (2) renderings from different viewpoints.



Figure A.3: Qualitative results on our PROX dataset. The human body pose is estimated with (light gray) and without
(yellow) our environmental terms. We show from left to right: (1) RGB images, (2) renderings from different viewpoints.



Figure A.4: Qualitative results on the PiGraphs [4] dataset. The human body pose is estimated with (gray color) and without
(yellow color) our environmental terms. Please note that [4] estimate just a 3D skeleton of only the major body joints. We
show from left to right: (1) RGB images, (2) renderings from different viewpoints.

Figure A.5: Representative failure cases on our PROX dataset. We show from left to right: (1) RGB image, (2) OpenPose
result overlayed on the RGB image, (3) result of our method.



Figure A.6: Representative failure cases on our PROX dataset. We show from left to right: (1) RGB image, (2) OpenPose
result overlayed on the RGB image, (3) result of our method.



