
Supplemental

A. Implementation Details
We adopt the original parameters used in DORN [12] for

NYUv2 depth estimation, except that we output 13 dimen-
sions at the final layer and use our loss to train the network.
During our experiments, the input and output image resolu-
tion is 320x240. We use the fixed learning rate as 1e-5.

B. Additional Baselines
Necessity to predict both tangent directions and the sur-
face normal We did an experiment on Scannet to test how
the results change when only one tangent direction is pre-
dicted. This method yields mean angle errors of 16.34� for
normals (versus 15.28� with ours) and 12.41� for tangents
(versus 12.26� with ours). Although a normal and one tan-
gent can define a coordinate frame, it is better to predict the
second tangent directly rather than deriving it from the nor-
mal. This result corroborates the main thesis of the paper –
predicting tangents helps predicting 3D coordinate frames.

Geometry prediction followed with canonical frames
computation We did a baseline experiment where we
predict depth and normals using the DORN architecture and
then use the resulting surface reconstruction to compute the
canonical 3D tangent frame with Quadriflow. The mean an-
gle error of the tangent directions on the ScanNet test set
is 35.84�, while ours is 12.26�. The difference is not sur-
prising since our method is trained with the ground truth
tangent supervision.

C. Surface Normal Estimation
Compare with the state-of-the-art We compare the per-
formance of the surface normal estimation from our ap-
proach with the state-of-the-art methods on SunCG [38].
We use our approach to train four networks and evaluate
them. Table 8 shows the results including UNet [31], Skip-
Net [3], GeoNet [28] and DORN [12]. With the assistance
of the projected tangent principal directions, the normal pre-
diction has been improved. Please refer to the experiments
for ScanNet in the main paper in section 5.1.

Test on NYUv2 We test different versions of our network
on NYUv2 [11] as a standard evaluation dataset. We train
the network on SunCG datasets and directly test on NYUv2,
as shown in Table 9. Specifically, GeoNet-origin trained
and tested on NYUv2 [28], and is the current state-of-the-
art method on normal estimation. Other rows are networks
trained w/o. our joint losses on SunCG.

The joint loss in the training process results in better nor-
mal estimation. From the ScanNet experiment in section 5.1

SunCG mean median rmse 11.25� 22.5� 30�

UNet 14.88 6.20 24.94 64.4 78.6 83.9
UNet-Ours 13.25 4.64 23.73 69.8 81.6 86.1

SkipNet 13.38 3.97 24.54 70.2 80.3 85.1
SkipNet-Ours 12.82 3.87 23.69 71.0 80.2 86.1

GeoNet 13.14 3.56 23.54 70.6 80.7 86.0
GeoNet-Ours 12.68 3.60 22.73 71.2 81.3 86.6

DORN 12.90 3.36 24.12 71.3 81.3 85.3
DORN-Ours 12.38 3.33 23.34 72.3 82.3 86.3

Table 8. Evaluation on Surface Normal Predictions. We train
and test our algorithm with different network architectures on the
SunCG [9]. Assisted by our joint loss, the performances of all
networks are improved.

NYUv2 mean median rmse 11.25� 22.5� 30�

GeoNet-origin 19.0 11.8 26.9 48.4 71.5 79.5
SunCG mean median rmse 11.25� 22.5� 30�

UNet 25.21 18.26 32.82 32.2 57.7 68.3
UNet-Ours 24.64 17.10 32.65 35.0 59.6 69.5

SkipNet 24.75 17.36 32.45 33.8 58.1 69.0
SkipNet-Ours 23.67 16.28 31.72 36.1 62.2 72.7

GeoNet 22.32 14.97 30.59 39.8 64.3 73.4
GeoNet-Ours 22.15 14.41 30.18 40.1 65.3 74.4

DORN 22.19 14.46 30.16 40.3 65.3 74.1
DORN-Ours 21.99 14.29 29.87 40.5 65.8 74.6

Table 9. Normal prediction on NYUv2 [11]. GeoNet-origin
trained and tested on NYUv2 [28]. In other rows, we train network
w/o. our joint loss on SunCG and tested on NYUv2. DORN-Ours
trained on ScanNet performs best among all.

of the main section, ScanNet gets better performance com-
pared to SunCG, possibly due to the domain gap between
synthetic (SunCG) and real (NYUv2).

D. Visualization
Surface Normal Comparison Figure 13 visualizes the
normal prediction using the best model w/o. our approach
on both the datasets. With our approach, the errors are
smaller especially at object boundaries, possibly because
of the additional supervision given by the projected tangent
principal directions. We show more accurate prediction, es-
pecially for small objects.

Visualize the tangent principal directions We show
more visualization for the projected tangent principal direc-
tions in figure 14. The model is trained using the Dorn [12]
with our joint loss on ScanNet [9]. The visualization shows
a similar direction field compared to the ground truth and is
consistent with human intuition.

Visualize the feature matching We show more visual-
ization for comparison between SIFT and SIFT with our
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Figure 13. Visual comparison of the results. With our joint loss,
the predicted surface normals produce less errors and more details.
We show more accurate prediction especially for small objects.

perspective rectification on the DTU [1] in figure 15. We
produce more correct matching than SIFT does.

Visualize the augmented reality results We show more
examples of new elements insertion into the scene in fig-
ure 16. The perspectives are locally consistent with the
canonical frames of the geometry.

RGB GT Pred

Figure 14. Visualization of the projected tangent principal direc-
tions. The visualization shows similar direction field compared to
the ground truth, and is consistent with human intuition.
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Figure 15. Visualization of the feature matching using SIFT and
SIFT with our perspective rectification. We produce more correct
matching than SIFT does.
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Figure 16. Visualization of augmented reality results. We attach
images in a rigid or deformable way (highlighted with yellow
square), or 3D objects into the scenes. The perspectives are lo-
cally consistent with the canonical frames.


