Supplementary Material for:
Adversarial Defense via Learning to Generate Diverse Attacks

A. Experiment Details (Section 5)

We provide additional details on the model architecture,
hyperparameters, and examples of noises of L2L-DA.

A.1. Architecture of our Generator Network g,

Recall that our generator g4 in Eq. (5) and Algorithm 1
takes an image x, the corresponding ground-truth label y, a
random noise z € R?, the accumulated noise §(*) up to the
time step ¢ starting from 6(®) = 0 (Eq. (5)), and the gradient
backpropagated to the image meﬁ(x(t)). In this section,
we describe the sequence of operations used for generating
the adversarial noise.

First, in each time step, we obtain the gradient backprop-
agated to the input space Vv £(x(")) and normalize the
size of each (height, width) matrix by its Frobenius norm.
We denote the result of this operation as V, £L(x(!)) =
Ve LX) /|| Vo L(xD)|| 7, where || - || denotes the
Frobenius norm. This operation allows our generator to
control the magnitude of the adversarial attack independent
of the choice of the backbone classifier (i.e. the magnitude
of the gradient over the input x varies depending on the net-
work), without losing the direction of the gradient.

After tlle normalization, we then concatenate x,
§® and V,uL(x®) channel-wise and denote it as
X = [x00;V,nL(xD)] e RN*HXWx3C  where
N, H, W, C denotes the mini-batch size, height, width and
the number of channels of x (e.g. C = 3 for RGB images
and C = 1 for gray-scale images).

Also, we sample a random noise z from the standard nor-
mal distribution A/ (0, I) and feed it to two fully-connected
layers with the same number of hidden states (d), with
ReLU activation after each fully-connected layer, to obtain
a richer expression z, following the idea of [S]].

We generate the adversarial attack from X by passing it
to a set of 2D convolutions (conv(l, k, s)), 2D deconvolu-
tions (deconv(l, k, s)) of padding size 1, and channel-wise
concatenations with an additional tensor m (ccat(m)):
here, [ means the number of filters, £k means the width and
height of the square kernel, and s means the stride. As illus-
trated in Figure [A] most of the design choices are adopted
from Zhu et al. [[10] and Chen et al. [1]].

The generator g4 of L2L-DA applies the following oper-
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Figure A: Network architecture of the generator g (used in
Figure 1 of the main paper)

ations to X to get the adversarial noise: X - ccat(tile(z))
-conv(64, 3, 1) - LeakyReLU - [skip1] - ccat(tile(z))
- conv(64, 4, 2) - CondBN(y) - LeakyReLU - [skips]
- ccat(tile(z)) - conv(128, 4, 2) - LeakyReLU -
deconv(64, 4, 2) - CondBN(y) - ReLU - ccat(skips) -
deconv(64, 4, 2) - CondBN(y) - ReLU - ccat(skipy) -
conv(C, 3, 1) - tanh, where tile(z) denotes the spa-
tial tiling of the vector z to have the same width and height
of the current tensor, LeakyReLU [9] has a negative slope
of 0.2, CondBN(y) is the class-conditional batch normal-
ization [3} 2] with ground-truth label input y as the con-
dition, and [(-)] denotes a branch for skip connections in
the deconvolution stage. Note that we use y solely for
the class-conditional batch normalization to encourage our
model focus on its class-conditional distribution rather than
the global statistics.

A.2. Hyperparameters

We empirically choose the hyperparameter A in Eq. (8),
to balance between the diversity loss and the classification
loss, by validation. We use A = 0.02 for MNIST with
LeNet-5 classifier [7], A = 0.5 for CIFAR-10 [6] with
ResNet-20 classifier [4], and A = 0.3 for Tiny ImageNet [8]]
with ResNet-18 classifier. For the dimension of z, we set it
to d = 8 for all the experiments (MNIST, CIFAR-10, and
Tiny ImageNet).
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(a) MNIST [7]
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(b) CIFAR-10 [6]

Figure B: Visualization of adversarial examples and the corresponding adversarial noises. We feed different z (corresponds
to each column) to an item per each class in the test dataset (each row) to our generator. The left half of the images are the
adversarial outputs, and the right half of the images are the adversarial noises applied to the original test image. To visualize
the noises, we first re-scale the size of the ¢,.-ball to 1/2 and then shift every value by 1/2.

Defense Attack Natural | FGSM | PGD10 | PGD100 | CW100 | CW1000 | AdvGAN | GAP | L2L-DA Min
Plain 68.27 0.93 0.01 0.00 0.00 0.00 53.07 3224 0.00 0.00
PGD10 40.69 12.69 9.58 8.97 9.57 9.43 39.11 37.06 9.78 8.97
PGD40 47.41 16.10 12.85 12.09 11.99 11.96 44.19 44.20 18.79 11.96
L2L* 59.89 14.67 0.27 0.05 0.00 0.00 0.48 0.12 0.56 0.00
L2L-DA (full) | 52.64 20.05 16.24 15.53 14.47 14.34 48.73 48.83 24.70 14.34

Table A: Accuracy of each trained classifier on Tiny ImageNet dataset [|8] with white-box attacks. Each classifier is pretrained
on ResNet-18 [4]] (each row), and each of the white-box attack (each column) is applied to each classifier.

B. Experimental Results on Tiny Imagenet
dataset (Section 5.2.2)

As a sanity check, we additionally test our approach on
the Tiny ImageNet dataselﬂ [8l], which includes 500/50/50
train/validation/test images of 64x64 from each of the 200
object classes. We train each model with ResNet-18 back-
bone [4]] for 100 epochs, and 20 epochs for PGD40 due to
its training speed. Besides that, we use the validation set for
the evaluation instead of the test set because it does not have
ground-truth labels. This is because we use the classifica-
tion accuracy of the model, which requires the label infor-
mation for computation, as a proxy measure of robustness.
We present the result of the white-box attacks in Table [A]

Similar to the experiment in Section 5.2.2, we train the
classifiers with adversarial attacks (each row) on ResNet-
18 [4] and measure the accuracy of the classifier after per-
forming a white-box attack (each column). As in the Ta-
ble[A] the classifier trained with our method shows 2.38%p
higher classification accuracy than all the other baseline
methods in terms of ‘Min’ accuracy.

Ihttps://learningai.io/projects/2017/06/29/
tiny-imagenet.html

C. Qualitative Evaluation of Noises and Adver-
sarial Data

We visualize some of the noises generated by our gen-
erator trained in Section 5.2 with MNIST and CIFAR-10
dataset. Figure [B| shows that the noises generated by our
generator are diverse, and perceptually indistinguishable
when added to the given test image for generating adver-
sarial samples. For example, the sixth row of Figure [B](a)
shows a very different style of noises generated by sam-
pling different z’s: some of them put more weights on the
background, whereas others add more noise on the digit it-
self. Similarly, in the adversarial noises in the seventh row
of Figure [B](b), some of the noises try to change the center
area of the image to black, while others tend to change it to
green, depending on the z provided. Even though the orig-
inal /.. -ball for the CIFAR-10 dataset is 8/255, our model
tries to generate attacks with different noises. This result
demonstrates that our method is able to generate a diverse
attack.


https://learningai.io/projects/2017/06/29/tiny-imagenet.html
https://learningai.io/projects/2017/06/29/tiny-imagenet.html
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