
Appendix
In the appendix we provide additional details for deriv-

ing the derivative of the NUFT process as well as control
point methods (Sec. A), network architecture and training
details (Sec. B). In Sec. C we provide additional compu-
tational performance benchmarks for the DDSL layer. In
Sec. D we showcase additional applications of the DDSL
towards 3D applications besided the 2D examples in the
main paper. In Sec. E we provide additional visualizations
for the DDSL rasterization of 3D meshes.

A. Mathematical Derivations
A1. NUFT Derivative Derivation

Proof of Lemma 3.1. Using Jacobi’s formula and chain
rule,

∂γjn
∂xp

=
(−1)j+1

2

√
2j(−1)j+1det(B̂jn)

tr

(
adj(B̂jn)

∂B̂jn
∂xp

)
(20)

=
(−1)j+1/2j

2γjn

j+2∑
m=1

j+2∑
n=1

ÃmnD̃nm (21)

where Ã is adj(B̂jn) and D̃ is ∂B̂j
n

∂xp
. Since B̂jn is symmetric,

its adjunctive and derivative with respect toxp are also sym-
metric. The elements on the diagonal and the first row and
column of D̃ are zero, since the elements in the same posi-
tions in B̂jn are constant. The elements not in the (p+ 1)th
row or the (p+1)th column of D̃ are also zero, since the el-
ements in these positions in B̂jn do not depend on xp. Thus,

D̃ =

0 . . . 0 0 0 . . .
...

. . .
...

...
...

0 . . . 0 D̃p,p+1 0 . . .

0 . . . D̃p+1,p 0 D̃p+1,p+2 . . .

0 . . . 0 D̃p+2,p+2 0 . . .
...

...
...

...
. . .

(22)

Each nonzero element of D̃ is computed as follows:

D̃p+1,n =
∂d2p,n−1
∂xp

= 2(xp − xn−1) (23)

D̃m,p+1 =
∂d2m−1,p
∂xp

= 2(xp − xm−1) (24)

It follows that the double summation term in Eqn. 21
simplifies to

j+2∑
m=1

j+2∑
n=1

ÃmnD̃nm = 2

j+2∑
m=2
m 6=p+1

Ãp+1,mD̃p+1,m (25)

For clarity and ease of implementation, we modify the
indexing in Eqn. 25 and the derivative of the content distor-
tion factor is finally

∂γjn
∂xp

=
(−1)j+1/2j

γjn

j+1∑
m=1
m6=p

ApmDpm (26)

Proof of Lemma 3.2. By the sum rule,

∂S

∂xp
=

j+1∑
t=1

∂St
∂xp

(27)

We examine two cases, when t = p and when t 6= p. For
t = p,

∂St
∂xp

=
1(∏j+1

l=1,l 6=p(σp − σl)
)2k

 j+1∏
l=1,l 6=p

(σp − σl)

(−ie−iσp
)

+e−iσp

 ∂

∂xp

 j+1∏
l=1,l 6=p

(σp − σl)

 (28)

=− e−iσp∏j+1
l=1,l 6=p(σp − σl)

i+

j+1∑
q=1,q 6=p

1

σp − σq

k
(29)

For t 6= p,

∂St
∂xp

=
∂

∂xp

(
e−iσt

(σt − σ1)...(σt − σp)...(σt − σj+1)

)
(30)

=

 e−iσt

(σt − σ1)...(σt − σp−1)(σt − σp+1)
...(σt − σj+1)

(

∂

∂xp

(
1

σt − σp

))
(31)

=

 e−iσt

(σt − σ1)...(σt − σp−1)(σt − σp+1)
...(σt − σj+1)

(

1

(σt − σp)2
k

)
(32)

=
e−iσt∏j+1

l=1,l 6=t(σt − σl)

(
1

σt − σp

)
k (33)

Thus,

∂S

∂xp
=

j+1∑
t=1

∂St
∂xp

(34)

=

 j+1∑
t=1,t6=p

(
e−iσt∏j+1

l=1,l 6=t(σt − σl)

(
1

σt − σp

))

− e−iσp∏j+1
l=1,l 6=p(σp − σl)

i+

j+1∑
q=1,q 6=p

1

σp − σq

k
(35)

=

−i e−iσp∏j+1
l=1,l 6=p(σp − σl)

+

j+1∑
t=1,t6=p

1

σt − σp[
e−iσt∏j+1

l=1,l 6=t(σt − σl)
+

e−iσp∏j+1
l=1,l 6=p(σp − σl)

])
k

(36)

=

−iSp +

j+1∑
t=1,t6=p

St + Sp
σt − σp

k (37)

Derivation of Eqn. 14. Using the product rule,

∂F jn(k)

∂xp
= ρni

j

(
∂γjn
∂xp

S +
∂S

∂xp
γjn

)
(38)

We obtain Eqn. 14 by substituting Eqns. 11 and 13 into
Eqn. 38.

A2. Control Points

We use linear blend skinning to control mesh deforma-
tion using control points. The new position of a point v′

on the shape is computed as the weighted sum of handle
transformations applied to its rest position v:

v′ =

m∑
j=1

wj(v)Tj

(
v
1

)

Where Tj is the transformation matrix for the j-th control
point, wj(v) is the normalized weight on vertex v corre-
sponding to control point j. The transformation is repre-
sented in homogeneous coordinates, hence the extra dimen-
sion.

Consider control points with 3 degrees of freedom:
(tx, ty, θ) where tx and ty represent translations in x and
y and θ represents rotation around that control point. Hence

we have

v′x =
∑N
j=1 wj(v)

(
cos(θj − θ̃j)vx − sin(θj − θ̃j)vy

− cos(θj − θ̃j)cx + sin(θj − θ̃j)cy
+cx + vx + tx

)
v′y =

∑N
j=1 wj(v)

(
sin(θj − θ̃j)vx + cos(θj − θ̃j)vy

− sin(θj − θ̃j)cx − cos(θj − θ̃j)cy
+cy + vy + ty

)
Where θ̃j is the original orientation of the control points. It
does not matter since we will be taking the derivatives with
respect to θ, and θ̃j terms will disappear. The jacobian of v
with respect to the three degrees of freedom is:

J =

[
∂v

∂tx
,
∂v

∂ty
,
∂v

∂θ

]
=

[
wj(v) 0 wj(v)(−vy + cy)

0 wj(v) wj(v)(vx − cx)

]
B. Network Architecture and Training Details

In this section, we detail all the network architectures
and training routines for the reader’s reference.

B1. MNIST

We use a standard LeNet-5 architecture with 3 convolu-
tional layers and 2 fully connected layers.

Network Architecture The input is a 28x28 pixel image,
which is normalized according to the mean and standard
deviation of the entire dataset. The network architecture is
as follows:

Conv(1, 10, 5, 1) + MaxPool(2) + ReLU→ Conv(10, 20,
5, 1) + Dropout + MaxPool(2) + ReLU→ FC(320, 250) +
ReLU→ Dropout→ FC(250, 10)

Total number of parameters: 88,040

Notation Meaning

Conv(a, b, c, d) Convolutional layer with a input
channels, b output channels, kernel
size c, and stride d.

MaxPool(a) Maximum Pooling with a kernel
size of a.

ReLU Rectified Linear Unit activation
function.

FC(a, b) Fully connected layer with a input
channels and b output channels.

ResNet-50(a) ResNet-50 architecture with a out-
put channels.

BN Batch Normalization.

Table 4: Network architecture notation list.

Training Details We train the neural network with a batch
size of 64 and an initial learning rate of 1× 10−2 with a de-
cay of 0.5 per 10 epochs. We use the Stochastic Gradient
Descent optimizer with a momentum of 0.5 and a cross en-
tropy loss.

B2. Airfoil

We use ResNet-50 [13] followed by three fully con-
nected layers to predict the lift-drag ratio on the airfoil.

Network Architecture The input is a 224x224 pixel im-
age of the airfoil. For each piece of data, we append the
Reynolds number and angle of attack after ResNet-50 and
before the fully connected layers. The network architecture
is as follows:

ResNet-50(1000) + BN + ReLU → append Reynolds
number and angle of attack→ FC(1002, 512) + BN + ReLU
→ FC(512, 64) + BN + ReLU→ FC(64, 32) + BN

Total number of parameters: 26,100,345

Training Details We train the neural network with a batch
size of 240 and an initial learning rate of 1×10−2 with a de-
cay of 1× 10−1 per 20 epochs. We use the Adam optimizer
and a mean squared error loss.

B3. Polygon Image Segmentation

We present a novel polygon decoder architecture that is
paired with a standard pre-trained ResNet50 as input.

Network Architecture The model architecture is detailed
in Fig. 4. All ground-truth polygons are normalized to the
range [0,1) corresponding to the relative positions within
the bounding boxes. Using this network architecture, we
first predict the three (x, y) coordinates associated with the
base triangle. Then, we progressively predict the offsets of
the vertices in the next polygon hierarchy (See Fig. 3). The
resulting polygon is rasterized with the DDSL to compute
the rasterization loss compared with the rasterized target.
Smoothness loss can be directly computed based on the ver-
tex positions and does not require rasterization.

Total number of parameters: 24,274,426

Training Details We train the network end-to-end, with
a batch size of 48, learning rate of 10−3 for 200 epochs.
We use a smoothness penalty of λ = 1. We use the Adam
optimizer.

C. Additional Computational Efficiency Tests
In addition to the computational speed benchmarks in

Fig. 5 highlighting the performance gain of analytic deriva-
tive computation over numerical derivatives, we perform
additional tests for 2D and 3D computation speeds on more

complex polygons and meshes to show the applicability of
DDSL to 2D and 3D computer vision problems.

Res2 16 32 64 128 256

Fwd Time (ms) 2.30 1.88 2.48 5.02 20.13

Bwd Time (ms) 4.33 3.80 5.93 16.69 59.15

Table 5: 2D Computational speed (polygon w/ 250 edges).

Res3 4 8 16 32

Fwd Time (ms) 9.88 9.32 14.21 78.62

Bwd Time (ms) 14.47 10.06 34.26 239.51

Table 6: 3D Computational speed (tri-mesh w/ 1300 faces).

D. 3D Geometric Applications
To showcase the generalizabilty of the DDSL to 3D do-

main, we demonstrate its application in two separate 3D
tasks that utilze the differentiablity of the simplex rasteri-
zation layer.

D1. 3D Rotational Pose Estimation

In Fig. 8, we use DDSL to create a differentiable vol-
umetric loss comparing current and target shapes, the gra-
dients of which can be backpropagated to the pose. More
specifically, we parameterize the rotational pose as a quater-
nion q = a+ bî+ cĵ + dk̂, s.t.||q||2 = 1. The rasteriza-
tion loss is defined as:

L(q) = ||D32(V (q))−D32(Vtg)||1

whereD32 is the rasterization operator at resolution 323 and
Vtg is the target mesh.

Figure 8: Mesh pose and rasters before and after opt.

Although the volumetric rasterization loss is not a glob-
ally convex loss for pose alignment, with certain initializa-
tion of the target poss, the pose can be estimated by mini-
mizing the DDSL rasterization loss.

D2. Single Image Mesh Estimation

In Fig. 9, we evaluate our method in the context of 3D
deep learning. Our model consists of an image encoder
from ResNet18, spherical convolutions [17] for generating
a distortion map for a spherical mesh, and a loss function
which is a weighted sum of DDSL rasterization loss (at 323

resolution), Chamfer loss from point samples, Laplacian
regularization loss, and Edge length regularization loss. We
train on the airplane category in ShapeNet dataset, with (w/)
and without (w/o) DDSL loss. We evaluate using accuracy,
completeness, and chamfer distance metrics (see Tab. 7).

Since surface based Chamfer distance does not signal
the network to produce consistently oriented surfaces and
does not consistently enclose volume, it leads to incorrectly
oriented surfaces. DDSL loss effective regularizes surface
orientation based on the volume enclosed according to the
surface orientations, and improves overall results.

DDSL Accuracy Complete Chamfer

w/o 8.47 9.84 9.16
w/ 2.15 1.83 1.99

Table 7: Evaluation resultsn(×10−2).

(a) w/ DDSL (b) w/o DDSL

Figure 9: Qualitative visualization of generated samples.

E. Additional 3D Visualizations
We provide visualizations for rasterizing 3D shapes, ras-

terizing the enclosed volume as well as the surface mesh.

Input
Triangular
Mesh

Rasterize
Surface
Mesh (j=2)

Rasterize
Enclosed
Volume (j=3)

Figure 10: In this example above, the input is a watertight
triangluar mesh represented by vertices and faces. It can be
rasterized in-situ in a 3-dimensional grid differentiably. The
value is approximately 0 or 1 indicating signal densities.

