
SUPPLEMENTARY MATERIAL OF

SENSE: a Shared Encoder Network for Scene-flow Estimation

Huaizu Jiang1† Deqing Sun2∗ Varun Jampani2∗

Zhaoyang Lv3† Erik Learned-Miller1 Jan Kautz2
1UMass Amherst 2NVIDIA 3Georgia Tech

In this supplementary material, we provide more details about network training, rigidity-based warped disparity refinement
for scene flow estimation, the proposed network architecture, and additional ablation as well well visual results.

1. Training Details
We perform pre-training on the synthetic SceneFlow dataset and fine-tuning on Sintel and KITTI, respectively.

Synthetic SceneFlow Dataset. We use the subset of FlyingThings3D used in [2], Monkaa, and Driving for pre-training. We
remove images whose maximum optical flow magnitude is greater than 500. We end up using 128,753 samples for training.

Supervised training is performed for the pre-training with ground-truth annotations of optical flow, disparity, and their
associated occlusions. The loss function is defined as

Lsp = (LF + LOF
) + 0.25× (LD + LOD

) . (1)

For Monkaa and Driving, since only optical flow and disparity annotations are available, we only set LOD
and LOF

to 0 for
training data sampled from Monkaa and Driving.

During training, we use color jittering, including randomly changing gamma value, changing brightness, changing con-
trast, and adding Gaussian noise, for both optical flow and disparity training. Additionally, we use random crops and vertical
flips for stereo training images. The crop size is 256 × 512. For optical flow training images, we perform extensive data
augmentations including random crop, translation, rotation, zooming, squeezing, and horizontal and vertical flip, where the
crop size is 384 × 640. The network is trained for 100 epochs with a batch size of 8 using the Adam optimizer [3]. We
use synchronized Batch Normalization [5] to ensure there are enough training samples for estimating Batch Normalization
layers’ statistics when using multiple GPUs. The initial learning rate is 0.001 and decreased by factor of 10 after 70 epochs.
Sintel. We fine-tune the pre-trained model on Sintel. Sintel training data provides optical flow, disparity, and their corre-
sponding occlusion annotations. We therefore use the same loss function as used for the pre-training.

During training, we apply the same color jittering used for pre-training. Similarly we use random crops and vertical
flips for stereo training images with crop size of 384 × 768. For optical flow training images, we perform extensive data
augmentations as well including random crop, translation, rotation, zooming, squeezing, and horizontal and vertical flip,
where the crop size is 384× 768.

Synchronized Batch Normalization is used with batch size of 8. The model is first trained for 500 epochs using the Adam
optimizer with an initial learning rate of 0.0005, which is decreased by factor of 2 after every 100 epochs. The weight decay
is 0.0004. After 500-epoch training is finished, we keep fine-tuning the model for another 500 epochs using Adam with an
initial learning rate of 0.0002, which is decreased by factor of 2 after every 100 epochs. The weight decay remains 0.0004.
KITTI. On KITTI (including KITTI2012 and KITTI2015), we use both supervised loss and semi-supervised loss. The final
loss is defined as

L = LF + LD︸ ︷︷ ︸
supervised loss

+αO
(
LOFd

+ LODd

)
+ αSd

LSd︸ ︷︷ ︸
distillation loss

+αPCLPC + αSCLSC + LSS + LREG︸ ︷︷ ︸
self-supervised loss

, (2)

†The work was begun while the author was an intern at NVIDIA.
*Currently affiliated with Google.



where LOFd
and LODd

are distillation loss for optical flow occlusion and disparity occlusion, respectively. They are defined
as smooth L1 loss between the pseudo ground-truth (i.e., estimations from a model pre-trained on synthetic SceneFlow
dataset) and estimations from the model being trained. On the validation set, we empirically found αO = 0.05, αSd

=
1, αPC = 0.5, αSC = 0.5 work well. For the SSIM loss, we use γD = 0.005 × CH × CW and γF = 0.01 × CH × CW 1,
where CH and CW are crop height and width, respectively. For the regularization term, we empirically set βF = βD = 0.5.

During training, we use similar color jittering used in pre-training but with a probability of 0.5. Similarly we use random
crops and vertical flips for stereo training images with crop size of 320× 768. For optical flow training images, we perform
extensive data augmentations as well including random crop, translation, rotation, zooming, squeezing, and horizontal and
vertical flip, where the crop size is 320× 768.

Synchronized Batch Normalization is used with batch size of 8. The model is fine-tuned for 1,500 epochs using the Adam
optimizer with an initial learning rate of 0.001, which is decreased by factor of 2 at epochs of 400, 800, 1,000, 1200, and
1,400. The weight decay is 0.0004. Another round of fine-tuning is followed with an initial learning rate of 0.0002, which is
decreased by factor of 2 at epochs of 400, 600, 800, and 900.

2. Rigidity-based Warped Disparity Refinement for Scene Flow Estimation
Determine rigidity area. Given the estimated semantic segmentation labels of the first left frame S1,l, we select pixels as
static rigid regions by removing pixels which have a semantic label of vehicle, pedestrian, cyclist, or sky. This step gives a
conservative selection of static regions with points not at infinity. The output is a binary mask B with the label 1 indicating
static rigid region. Since the semantic segmentation can be inaccurate at object boundary, we further perform an erosion
operation with a size of 10 on the static rigid region mask B.
Estimate rigid flow induced by camera motion. Given the estimated flow F1 and disparity D1 of the left frame, we
calculate the ego-motion flow induced by the rigid camera motion by minimizing the weighted errors between predicted rigid
flow F1

R and optical flow F1 in the background region pixels x ∈ R2:

argmin
ξ

rT (ξ;x)Wr(ξ;x) (3)

r(ξ;x) = F1(x)− F1
R(ξ;x) (4)

F1
R(ξ;x) =W(ξ;x,D1(x))− x (5)

where x ∈ R2 denotes the pixels in 2D image space which are within the rigid areas B. W(ξ;x,D1) is the warping function
which transforms the pixels x and its corresponding disparity D1(x) with an estimated transform ξ ∈ SE(3). W is a
diagonal weight matrix that depends on residuals using Huber weight function.

We solve equation 3 as an iteratively reweighted least-square problem using Gauss-Newton update:

δξ = (JTWJ)−1JTWr (6)
ξ = ξ ◦ δξ (7)

where ◦ indicates the right composition of ξ ∈ SE(3). J is the Jacobian matrix of ∂F1
R(ξ)/∂ξ.

Suppose K is the intrinsic matrix for a pin-hole camera without distortion, which can be parameterized as (fx, fy, cx, cy)
with fx, fy as its focal length and cx, cy as its offset along the two axes. The baseline of the stereo pair is b. We define
the 3D point p = (px, py, pz) as p = (fxb/D

1(x))K−1x. Through chain-rule, we can derive the analytical form of the
Jacobian matrix J. To simplify the computation, we use the inverse depth parameterization p = (pu/pd, pv/pd, 1/pd) in
which x = (pu, pv) ∈ R2 is the pixel of coordinate of x and pd is the inverse depth as pd = D1(x)/(fxb). Thus, we obtain
the Jacobian matrix at a pixel x as:

[
−pupvfx (1 + p2u)fx −pvfx pdfx 0 −pupdfx
−(1 + p2v)fy pupvfy pufy 0 pdfy −pupdfy

]
(8)

We perform the Gauss-Newton update if the absolute residual error is bigger than 10−6 with a maximum of 20 iterations.
All operations are implemented in Pytorch and executed in GPU. The running time of the total optimization varies between
0.03s and 0.2s, according to the number of iterations. In average, the optimization step takes 0.1s for KITTI image of
resolution 375x1242.

1In our definition of SSIM loss, the function SS(·, ·) gives a single scalar value.



The final optical flow F is an element-wise linear composition of F1 and F1
R as:

F = (1−B)⊗ F1 +B⊗ F1
R (9)

where ⊗ indicates element-wise multiplications.
Estimate warped second frame rigid disparity. Given the estimated optimal ξ?, we define the disparity D1→2

W,R of the
second frame warped from the first frame following the optimal rigid transform ξ?:

D1→2
W,R =W1→2

D (ξ?;D1) (10)

whereW1→2
D (·) defines the disparity channel output from the warping functionW(·) through a forward warping. Given the

forward optical flow F1, the warped disparity of the second frame can be computed through an inverse warpingW2→1
D as:

D2→1
W =W2→1

D (F1,D2) (11)

We find that the disparity through forward warping D1→2
W,R gives more accurate disparity in static region and can better

handle occlusions. The final warped disparity D2
W is a element-wise linear composition of D2→1

W and D1→2
W,R as:

D2
W = (1−B)⊗D2→1

W +B⊗D1→2
W,R (12)

Note that both warping function cannot deal with out-of-boundary pixels due to two-view occlusion. This can be resolved
by the additional refinement network detailed in the following section.

Table 1. Definition of our shared encoder. H and W denote the height and width of the input images. [·] indicates a residual block [1]. We
use convolution with stride of 2 to perform downsampling. The first downsampling is performed in the layer conv1 1.

layer name output size layer setting

input H ×W × 3 -

conv1 1
H
2 ×

W
2 × 32

3× 3, 32
conv1 2 3× 3, 32
conv1 3 3× 3, 32

conv2 H
4 ×

W
4 × 32

[
3× 3, 32
3× 3, 32

]
× 3

conv3 H
8 ×

W
8 × 64

[
3× 3, 64
3× 3, 64

]
× 16

conv4 H
16 ×

W
16 × 128

[
3× 3, 128
3× 3, 128

]
× 3

conv5 H
32 ×

W
32 × 128

[
3× 3, 128
3× 3, 128

]
× 3

3. Details of Network Architecture
• Table 1 provides the detailed network architecture of our shared encoder, which is a ResNet-like [1] architecture.

• Table 2 provides details of the pyramid pooling module (PPM), which aggregates multi-scale feature maps to enhance
disparity estimation and semantic segmentation.

• The Hourglass module used for disparity estimation refinement is illustrated in Table 3. The input is a concatenation
of upsampled disparity (by a factor of 2), the feature map of the first image (128-dimensional), and the warped feature
map of the second image (128-dimensional). The output is a residual disparity estimation that is added to the twice
upsampled disparity.



Table 2. Definition of our PPM head, where branch1, branch2, branch3, and branch4 are all parallel branches on top of the conv5 layer in
the encoder.

layer name output size layer setting

branch1 H
32 ×

W
32 × 128

1× 1 adaptive avg. pool
1× 1, 128

bilinear interpolation

branch2 H
32 ×

W
32 × 128

2× 2 adaptive avg. pool
1× 1, 128

bilinear interpolation

branch3 H
32 ×

W
32 × 128

3× 3 adaptive avg. pool
1× 1, 128

bilinear interpolation

branch4 H
32 ×

W
32 × 128

6× 6 adaptive avg. pool
1× 1, 128

bilinear interpolation

fusion H
32 ×

W
32 × 128

concat of conv5, branch1
branch2, branch3, and branch4

3× 3, 128

Table 3. Definition of our disparity Hourglass refinement model.

layer name output size layer setting

input H
2
× W

2
× 257 -

conv1 H
4
× W

4
× 514 3× 3, 514

conv2 H
8
× W

8
× 514 3× 3, 514

conv3 H
8
× W

8
× 514 3× 3, 514

conv4 H
4
× W

4
× 514

bilinear interpolation
3× 3, 514

conv5 H
2
× W

2
× 257

bilinear interpolation
3× 3, 257

output H
2
× W

2
× 1 3× 3, 1

• The refinement network for warped disparity, which is used for scene flow estimation, can be found in Table 4. The
input is a concatenation of I1,l, O1,l

F , D1,l, and g(D2,l,F1,l), with 6 (=3+1+1+1) channels in total. The network
consists of an encoder, a decoder, and skip connections between them. It contains 9.1M parameters in total and takes
0.01s for inference for a KITTI image with resolution of 375× 1242. We perform supervision for intermediate layers
of the decoder, in a manner similar to optical flow and disparity estimations.

4. More Ablation Studies
New network design. As shown in Table 5, we study the effectiveness of new network designs for disparity estimation.
The baseline model has exactly the same architecture as PWC-Net [4] for optical flow estimation, except we construct a
1D cost volume for disparity estimation. It is a compact model with 7.1M parameters. However, most of the parameters
concentrate in the decoder due to DenseNet blocks. By removing the last pyramid in both encoder and decoder and adding
Batch Normalization layers, we obtain significant improvement in disparity while halving the parameters. By replacing the
original encoder consisting of plain CNN layers with deeper residual blocks, we obtain further improvements and yet still
have fewer parameters. Adding PPM and hourglass refinement keeps improving the accuracy. Our final model has slightly
more parameters than the baseline, but the performance on both synthetic and real-world benchmark datasets increases
substantially.



Table 4. Definition of our warped disparity refinement model. output5 is on top of decoder layer 5. output4, output3, and output2 are
computed similarly. output1 is on top of decoder layer1 2. We compute loss for all five output during training and sum them up as the final
loss. During inference, we only compute output1.

layer name output size layer setting

input H ×W × 6 -

encoder layer1 H ×W × 32 3× 3, 32

encoder layer2 H
2
× W

2
× 32

2× 2 avg. pool, stride of 2
3× 3, 32

encoder layer3 H
4
× W

4
× 32

2× 2 avg. pool, stride of 2
3× 3, 32

encoder layer4 H
8
× W

8
× 32

2× 2 avg. pool, stride of 2
3× 3, 32

encoder layer5 H
16

× W
16

× 32
2× 2 avg. pool, stride of 2

3× 3, 32

bottleneck H
32

× W
32

× 32
2× 2 avg. pool, stride of 2

3× 3, 32

decoder layer5 H
16

× W
16

× 512
3× 3, 512

2× bilinear interpolation

decoder layer4 H
8
× W

8
× 256

concat. with encoder layer 5
3× 3, 256

2× bilinear interpolation

decoder layer3 H
4
× W

4
× 128

concat. with encoder layer 4
3× 3, 128

2× bilinear interpolation

decoder layer2 H
2
× W

2
× 64

concat. with encoder layer 3
3× 3, 64

2× bilinear interpolation

decoder layer1 1 H ×W × 32
concat. with encoder layer 2

3× 3, 32
2× bilinear interpolation

decoder layer1 2 H ×W × 32
concat. with encoder layer 1

3× 3, 32

output5 H
16

× W
16

× 1 3× 3, 1

output4 H
8
× W

8
× 1 3× 3, 1

output3 H
4
× W

4
× 1 3× 3, 1

output2 H
2
× W

2
× 1 3× 3, 1

output1 H ×W × 1 3× 3, 1

Table 5. Ablation study of design choices for disparity.
5 layers+BN ResNet encoder PPM hourglass #params FlyThings3D (EPE) KITTI2015 (EPE)

7.1M 2.10 1.01

X 3.6M 1.61 0.85
X X 6.9M 1.40 0.77
X X X 7.7M 1.32 0.77
X X X X 8.3M 1.15 0.71

Shared encoder. We report optical flow and disparity errors on Sintel, KITTI 2012, and KITTI 2015 using both separate and
shared encoders in Table 6, where a model trained on synthetic SceneFlow dataset is used. As we can see, a shared encoder



Table 6. Effectiveness of the shared encoder for optical flow and disparity estimations.

Sintel (EPE) KITTI 2012 KITTI 2015

clean final EPE D1/F1-occ EPE D1/F1-occ

optical flow separate encoder 1.97 3.34 2.63 11.72% 6.37 21.15%
shared encoder 1.91 3.78 2.55 12.56% 6.23 23.29%

disparity separate encoder 1.56 2.99 1.09 6.17% 1.26 6.62%
shared encoder 1.70 3.20 1.04 5.42% 1.22 6.38%

leads to better EPE metrics on both KITTI 2012 and KITTI 2015.

5. Visual Results of Optical Flow and Disparity Estimations
We provide more visual results of optical flow and disparity estimations of the test set in Fig. 1 and Fig. 2 for KITTI 2012

and in Fig. 3 and Fig. 4 for KITTI 2015.
We can clearly see our full model (supervised loss plus semi-supervised loss) produces visually better results on both

KITTI 2012 and KITTI 2015.

Acknowledgement
Huaizu Jiang and Erik Learned-Miller acknowledge support from AFRL and DARPA (#FA8750- 18-2-0126) and the

MassTech Collaborative grant for funding the UMass GPU cluster. The U.S. Gov. is authorized to reproduce and distribute
reprints for Gov. purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the AFRL and DARPA or the U.S. Gov.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016. 3
[2] Eddy Ilg, Tonmoy Saikia, Margret Keuper, and Thomas Brox. Occlusions, motion and depth boundaries with a generic network for

disparity, optical flow or scene flow estimation. In ECCV, 2018. 1
[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. 1
[4] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume.

In CVPR, June 2018. 4
[5] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for scene understanding. In ECCV,

2018. 1



(a) input images (b) supervised loss (c) full loss
Figure 1. Visual results on the test set of KITTI 2012. We show two consecutive video frames in the first column. In the second and third
columns, we show disparity in every first row and optical flow in the other one. Best viewed in color.



(a) input images (b) supervised loss (c) full loss
Figure 2. Visual results on the test set of KITTI 2012. We show two consecutive video frames in the first column. In the second and third
columns, we show disparity in every first row and optical flow in the other one. Best viewed in color.



(a) input images (b) supervised loss (c) full loss
Figure 3. Visual results on the test set of KITTI 2015. We show two consecutive video frames in the first column. In the second and third
columns, we show disparity in every first row and optical flow in the other one. Best viewed in color.



(a) input images (b) supervised loss (c) full loss
Figure 4. Visual results on the test set of KITTI 2015. We show two consecutive video frames in the first column. In the second and third
columns, we show disparity in every first row and optical flow in the other one. Best viewed in color.


