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A. Related Work

Adversarial Examples and Attacks.

In 2014, Szegedy et al. [41] shows that deep neural net-

works had mainly two counter intuitive properties, stating

that the space described by higher layers of neural networks

captures semantic information and there exists adversarial

examples which questioned the generalization ability of a

neural network. They generate such adversarial examples

under the L2 distance constraint which look similar to the

original images but are classified with a different label by

the classifier using a box constrained L-BFGS attack.

Goodfellow et. al [11] and Kurakin et al. [21] gener-

ate adversarial examples using Fast Gradient Sign method

and its iterative variant under the l∞ constraint in less com-

putation time. Other methods similar to FGSM have been

mentioned in [42].

Papernot et al. [34] implements an attack under the l0
constraint where they modify the pixel having the most sig-

nificant contribution in changing the classification of the

model to the target class. Moosavi-Dezfooli et al. [30]

describe an untargeted attack algorithm under the L2 con-

straint with the assumption that neural networks are linear

in nature which they further extend to non-linear neural net-

works. Another family of attacks relates to a single univer-

sal adversarial direction for a dataset. Moosavi-Dezfooli et

al. [29] prove the existence of an image-agnostic adversar-

ial perturbation. Fawzi et al. [10] extend this to theoreti-

cally show that every classifier is vulnerable to adversarial

attacks. Moosavi-Dezfooli et al. further consider the effect

of the curvature of the decision boundaries on the existence

of adversarial examples in [31].

Carlini and Wagner [3] propose three attacks for adver-

sarial image generation and shows that defensive distillation

is not an effective defence mechanism. They devise attacks

under the three norms in literature l1, l2 and l∞ to measure

the deviation of adversarial perturbation from the original

sample over seven different surrogate loss functions and fi-

nally selecting one of them which we use in our attack algo-

rithm as well. The attack that they implement in this work

is proven to be the most effective attack in literature and is

a benchmark for comparison.

The primary difference between the aforementioned at-

tacks and our attack is that these attacks perturb the im-

age and make imperceptible changes in the pixel space and

thereby not modifying the image in a semantic way. On the

other hand, our attack focuses making naturalistic percepti-

ble changes to the image which are semantic in nature and

realistic.

Parametric adversarial attacks.

The use of parametric transformations to generate adversar-

ial examples has been tackled by several previous works.

Most of these parametric attacks target the image forma-

tion process to create adversarial example. A recent work

by Liu et al. perturbs geometrical surfaces or lighting by

optimizing over the relevant parameters for a 3D environ-

ment. They show convincing results with realistic looking

adversarial examples. Zeng et al. [52] use FGSM to per-

turb 3D models of objects to create adversarial examples.

The primary caveat to such approaches is that they require

precise 3D models of the objects that they create adversar-

ial examples. Athalye et al. [1] demonstrate the creation of

a real-world adversarial 3D model using optimization over

affine transformations corresponding to real-world realiza-

tions. Eykhol et al. [9] also provide mechanisms for real-

world realizable adversarial examples for stop signs using

designed adversarial stickers.

Mopuri et al. [32] train a generative adversarial net-

work to generate adversarial attacks for classifiers. Zhao et

al. [54] show an interesting use of a GAN and an inverter

network where they search over the input space of the GAN

to generate semantically valid adversarial examples. These

approaches are morally similar to our approach though we

focus on specific physically perturbed attributes of images

rather than imperceptible perturbations. CAMOU [53] is

a more recent work that learns a neural approximator for

physical camouflage and then optimizes over the same to

generate an adversarial version to fool object detectors.

The space of generating adversarial examples using

GANs for face recognition systems has also been touched

upon by Dabouei et al. [7] and Sharif et al. [38] which train

generative networks for the specific purpose of creating ad-
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versarial examples. Sharif et al. especially show a realiz-

able attack by adding glasses using a generative network

to fool a face recognition classifier. We, in comparison,

provide a more diverse attack space allowing for various

semantic attributes. In addition, since our attack involves

physically realizable perceptible attributes, it can be used

to characterize a classifier’s performance against physical

adversarial attacks as well.

Song et al. [40] uses an Auxiliary Class Generative Ad-

versarial Network (AC-GAN) [33] to generate unrestricted

adversarial examples from noise and then optimizes over

the latent space of the conditional GAN to find such adver-

sarial examples which get missclassified by a gender clas-

sifier. The paper describes the use of Mechanical Turk as a

checker for naturalness and validation for the generated im-

ages belonging to the desired class. We approach the more

complex problem of finding an adversarial transformation

for an input image instead of generating a random semantic

adversarial example.

Attribute based generative models.

Our approach relies on the use of attribute based gener-

ative models for enforcing the semantic constraint and rep-

resenting attributes as a real-valued semantic variable. we

discuss a few relevant approaches published recently.

As mentioned in [14], the literature related to fa-

cial attribute editing can be broadly divided into two sec-

tions, optimization based approaches and learning based ap-

proaches. Optimization approaches include Li et al. [24]

and Gardneret al. [45] where the former optimizes the CNN

feature difference between the input face image and the face

images with the desired attributes with respect to the in-

put face while the latter optimizes the input face in order to

match the deep feature along the direction vector between

the faces with and without the attributes.

Li et al. [25] describe a method to optimize over an ad-

versarial attribute loss and a deep identity feature loss in

order to train a deep identity aware transfer model to add or

remove facial attributes to/from a face. Shen et al. [39] learn

the difference between images before and after manipula-

tion to simultaneously train two networks for respectively

adding and removing a specific attribute.

Generative Adversarial Networks(GAN) [12] are a popu-

lar approach for the generation of samples from a real-world

data distribution. Recent advancements [36, 26, 46, 4] in

GANs allow for creation of high dimensional, high quality

realistic images. These have been incorporated into the sev-

eral attribute swapping generative models. Zhou et al. [55]

recombine the information of the latent information of two

images to swap a specific attribute between the given im-

ages. Liu et al. [26] generate high quality images by cou-

pling GANs in order to learn a shared latent representation

in order to tackle several unsupervised image translation

tasks including domain adaptation and face image transla-

tion.

For multiple attribute swapping, models based on

Kingma et al. [19], Goodfellow et al. [12],Larsen et al. [23],

Mirza et al. [28], Radford et al. [36] have become quite pop-

ular recently. Perarnaue et al. [35] uses a Conditional Gen-

erative Adversarial Network [28] and encoder to learn the

attribute invariant latent representation for attribute editing.

Similar work has been seen in Fader Networks [22] where

the model learns the attribute invariant latent space in or-

der to identify a face as one and the same with or without a

specific attribute. On the other hand, AttGAN [14] argues

that such attribute invariant constraint is a bit too excessive

and imposes an attribute classification constraint and a re-

construction loss instead to alter only the desired attributes

preserving attribute-excluding features. StarGAN [6] uses

a cyclic consistency loss to preserve information and instead

of learning a latent representation, it trains a conditional at-

tribute transfer network to modify attributes. Chen et al. [4]

and Odena et al. [33] map the generated images back to the

conditional signals with the help of an auxiliary classifier

to learn this conditional generation of the images. Kaneko

et al. [16] uses a conditional filtered generative adversarial

network to present a generative attribute controller to edit

attributes of an image while preserving the variations of an

attribute.

Xiao et al. [50] swaps blocks of the latent distribution

containing relevant attributes between a given pair of im-

ages. A similar approach has been seen in Kimet al. [17]

where the latent representation is divided in blocks cor-

responding different attributes and these latent blocks are

swapped in order to achieve multiple attribute swapping.

Data poisoning.

Much of the prior work mentioned discuss about adversar-

ial attacks during inference. Data poisoning is a technique

where the adversary injects false data to hinder the general-

ization capability of a deep neural network. Koh et al. [20]

present the seminal work on data poisoning for deep neural

networks where they construct approximate upper bounds

to provide certificates to a large class of attacks. Xiao et

al. [49] and Xiao et al. [48] also present a similar approach

but on shallow learning models. Another class of data poi-

soning attack is referred to as a backdoor attack, where an

adversary corrupts the model to misclassify either a specific

input or a group of inputs to a target label thus engineering

a backdoor that can be used to corrupt the learned model.

Gu et al. [13] demonstrate a method to train a network ma-

liciously with good performance on training and validation

datasets but persistent poor performance on inputs associ-

ated with backdoor triggers.

These attacks can be realistic in nature, for e.g., a stop

sign can be identified by the classifier as a speed limit sign

in the presence of backdoor triggers which are mainly spe-
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cial markers added to the inputs by the adversary. Turner et

al. [44] show that an adversary is able to gain whole con-

trol over the target model during inference, by training

with samples generated with a GAN. More recently Tran et

al. [43] identify a property related to all backdoor attacks

known as spectral signatures with which poisoned exam-

ples from real image datasets can be detected and removed

effectively. Chen et al. [5] demonstrate an application of

such backdoor attacks on a visual recognition system where

they were able to break a weak threat model with a limited

number of poisoned data examples with semantic attribute

changes. This is perhaps the first attempt at considering the

effect of semantic changes.

B. Theoretical Results

Robust classification error for subspace attacks

We present a proof for the upper bound of the robust

classification error in the case of subspace attacks. Recall

the data model we use; a Mixture of Gaussians data model,

Pd(θ
⋆, σ) ∼ R

d ×±1 with two components and σ ≤
√
d.

Each of the components are regarded as classes. We addi-

tionally assume a linear classifier, fw : Rd → {±1} defined

by the unit vector, ŵ = sgn(〈ŵ,x〉).
Let Sǫ = {x̃ | x̃ = x+UU

T δ, ||x̃− x||∞ ≤ ǫ}
Under the assumption that the linear classifier is well

trained, i.e., ŵ is sufficiently correlated with the true com-

ponent mean, θ⋆, we upper bound the robust classification

error. This involves considering the sample generalization

error of a linear classifier on Gaussian data. We adapt ar-

guments from Schmidt et al. [37] for the case of subspace

attacks. The theorem statement is repeated here for conve-

nience.

Theorem 1. Let ŵ be such that 〈ŵ, θ⋆〉 ≥√
k||U ||∞,1||ŵT

U||2ǫ. Then, the linear classifier fŵ
has a Sǫ-robust classification error upper bounded as:

β ≤ exp






−

(

〈ŵ, θ⋆〉 −
√
k||U ||∞,1||ŵT

U||∞ǫ
)

2

2σ2






(1)

Proof. For proving the above statement, we consider the

probability of adversarial misclassification under a rank

constrained attack.

Given (x, y) ∈ R
d × ±1 where x ∼ MoG(θ⋆, σ;

σ ≤
√
d, we consider a linear additive attack under a rank

constraint,

x̃ = x+UU
T δ (2)

Here, U ∈ Md,k is a random matrix with the columns

forming an orthonormal basis of dimensionality k. In addi-

tion, we consider that the adversarial example thus created

is constrained to be in the norm ball, Bǫ
∞, which implies

that

||x̃− x||∞ ≤ ǫ (3)

We attempt to bound the probability that a rank con-

strained adversarial example, x̃, created using equation 2,

exists under the constraint defined by equation 3.

βǫ
∞ =P (∃x̃, x̃ ∈ Bǫ

∞s.t. 〈yx̃, ŵ〉 ≤ 0)

=P(∃δ : ||UU
T δ||∞ ≤ ǫ,

〈

y(x+UU
T δ), ŵ

〉

≤ 0)

=P(〈yx, ŵ〉+ min
||UUT δ||∞≤ǫ

〈

yUU
T δ, ŵ

〉

≤ 0)

Let δ′ , U
T δ.

Now,

βǫ
∞ = P

(

〈yx, ŵ〉+ min
||Uδ′||≤ǫ

〈yUδ′, ŵ〉 ≤ 0

)

(4)

Consider the domain of the minimization,

||Uδ′||∞ ≤ ǫ

Now using the definition of the (1,∞) operator norm for

rectangular matrices (See [2], Sec A.1.5) and the fact that

U is orthonormal,

||δ′||∞ ≤ ||δ′||1 = ||UT
Uδ′||1 ≤ ||UT ||1,∞||Uδ′||∞ ≤ ||U||∞,1ǫ

Let set A , {δ′ : ||δ′||∞ ≤ ||U||∞,1ǫ} and set B ,

{δ′ : ||Uδ′||∞ ≤ ǫ}. We can clearly see that B ⊆ A. Now

considering the f = 〈yUδ′, ŵ〉, as

min
A

f ≤ min
B

f

Thus we show that,

〈yx, ŵ〉+min
A

f ≤ 〈yx, ŵ〉+min
B

f (5)

From the above inequality, RHS ≤ 0 =⇒ LHS ≤ 0
but not vice versa.

By using the inclusion argument of probability measure,

we can therefore show that,

P

(

〈yx, ŵ〉+min
B

f ≤ 0
)

≤ P

(

〈yx, ŵ〉+min
A

f ≤ 0
)

(6)

We now upper bound the RHS term using the same ar-

gument as that of Lemma 20 in [37].

P

(

〈yx, ŵ〉+ min
||δ′||∞≤||U||∞,1ǫ

〈yUδ′, ŵ〉 ≤ 0

)

=P

(

〈yx, ŵ〉+ min
||δ′||∞≤||U||∞,1ǫ

yŵT
Uδ′ ≤ 0

)

Let w̄ , ŵ
T
U

=P

(

〈yx, ŵ〉+ min
||δ′||∞≤||U||∞,1ǫ

yw̄δ′ ≤ 0

)
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We now drop y as the constraint is symmetric and use defi-

nition of dual norm,

P (〈yx, ŵ〉 − ||U||∞,1||w̄||⋆∞ǫ ≤ 0)

=P (〈yx, ŵ〉 ≤ ||U||∞,1||w̄||⋆∞ǫ)

=P (〈yx, ŵ〉 ≤ k||U||∞,1||w̄||∞ǫ)

We now invoke Lemma 17 from [37] with µ = θ⋆ and

ρ = ||U||∞,1ǫ||w̄||∞ to bound the RHS,

β ≤ exp

(

−
(

〈ŵ, θ⋆〉 − k||U||∞,1||ŵT
U||∞ǫ

)2

2σ2

)

(7)

C. Details of Experiments

Dataset: For our experiments, we use the CelebA

dataset [27]. The dataset has approximately 200k images

of faces. Each image is annotated with 65 binary attributes.

Examples of these attributes are gender, age and skin

complexion. We preprocess the images by cropping the

central 178 × 178 sub-image and resizing each crop to

256 × 256. The resized images are then normalized to be

between −1 and 1.

Target Binary Classifier: We attack a pre-trained gender

binary classifier using our approach. The architecture used

for the classifier is shown in Table 1. We train the classifier

with 70% of the CelebA dataset [27] as training data and

20% as validation data using categorical cross-entropy. We

use ADAM [18] as our optimizer. Our model is 95.6% ac-

curate on the test set (10% of the dataset). We additionally

train a binary age classifier with the same architecture.

Layers Size

Convolutional Layer with Relu 32x3x3

Maxpooling Layer 2x2

Convolutional Layer with Relu 64x3x3

Maxpooling Layer 2x2

Convolutional Layer with Relu 128x3x3

Maxpooling Layer 2x2

Fully Connected Layer 1024

Fully Connected Layer 2

Table 1. Architecture for the binary classifier.

Adversarial Fader Networks

Architecture of Fader Networks. Fader Networks are

an encoder-decoder architecture that disentangles seman-

tic attributes during the reconstruction process. This is

achieved by training a discriminator on the encoded latent

vector while simultaneously reconstructing the original

image from the concatenated latent vector and the semantic

attribute vector. Figure 1 shows the architecture of the

Fader Networks. An intriguing effect of the training

process is that the attribute vector space can be treated as

a continuous and bounded space. We further can optimize

over this space to generate adversarial examples.

 

G

enc

G

dec

D

z

 

α

α/(1 − α)

Figure 1. Architecture of Fader Networks. The encoder converts

the input image to a latent vector. The decoder takes as input the

latent and the attribute vectors to generate the transformed image.

Here, the discriminative classifier acts as an adversarial network

to decouple the underlying invariant data from the semantic at-

tributes.

Single and Multi Attribute Attacks. We train three multi-

attribute Fader networks with attributes presented in table 2.

The pre-trained Fader networks are used as semantic con-

straints with the attribute vectors as the optimization vari-

ables. We then process examples from the CelebA test

set with the semantic attack algorithm to generate adver-

sarial examples. In order to make our optimization algo-

rithm compatible with Fader Networks, we create a non-

parametric forward model to convert the attribute vector to

a compatible form. We call this forward model “Attribute

Encoding”.

We generate semantic adversarial images by optimizing

over a modified Carlini-Wagner loss [3] with respect to the

attribute vectors using ADAM [18] with a learning rate of

0.01. We also experimented with various other optimizers

including stochastic gradient descent, RMSProp [15], but

find that ADAM generates sharper images as well is the

most successful.

Our experiments show that successful multi-attribute

models tend to be deeper and wider. In addition, these

networks are extremely susceptible to mode collapse

unless the hyperparameters are carefully tuned. We hy-

pothesize that this is an effect of the strong coupling of

facial attributes, thus making the generator-discriminator

optimization difficult. An unconditioned generative neural

network generally learns to associate these entangled

representations to a latent vector space where dimension

represents some combination of attributes. In order to get

past this, we model the multi-attribute perturbation problem

as a sequential perturbation of single attributes.
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Cascaded Attribute Attack. For the cascaded attribute

attack, we cascade several smaller single attribute models

one after the other to sequentially transform the input im-

age (Refer Figure ?? for a block diagram). In this case, the

problem of decoupling facial features from the underlying

invariant data is divided among multiple models. The trans-

formed image is then input to the target model. We gener-

ate adversarial examples as in the previous two cases for the

CelebA test set by optimizing the Carlini-Wagner loss. In

this case, we also modify the attribute encoding module to

treat each attribute tuple separately.

We find that the semantically transformed images tend

to be less sharp as compared to the ones generated single

or multi-attribute attacks. This can be attributed to the

concatenation of several reconstruction steps. Sequential

reconstruction leads to loss of information and the recon-

struction error compounding.

Attribute Encoding. Each attribute is represented by a tu-

ple of real numbers that sum up to one. These tuples are

concatenated into an attribute vector. To ensure that this

structure is preserved over the optimization framework, we

use a non-parametric forward model to algebraically ma-

nipulate our optimization variables to this specific repre-

sentation. The encoding module also implements the box

constraint for the optimized attribute values to lie between

−3.0 and 3.0 in order to ensure that the generated images

are valid.

Adversarial Attribute GANs

Architecture of Attribute GANs. Attribute GANs [14]

improve upon Fader Networks by using a discriminator-

classifier pair to analyse the reconstructed images (Refer

Figure 2 for the architecture). They optimize over a com-

bination of a reconstruction loss, an adversarial loss and an

attribute constraint loss to ensure the editing of the exact de-

sired attribute while preserving the attribute excluding de-

tails at the same time. The encoded latent vector is condi-

tioned on the attribute vector during the decoding process.

This results in the decoupling of semantic attributes from

the underlying identity data. AttGAN takes as input an im-

age and an attribute vector where each element represents

an attribute. We select k attributes to perturb for our seman-

tic attack.

We use a pretrained AttGAN model with 13 semantic at-

tributes. For our experiments we consider 5 and 6 attributes

respectively for transforming input images.

Attacks. We adapt our adversarial Fader Network approach

to the AttGANs by modifying the “Attribute Encoding”

module to mask attributes that we do not perturb. The en-

coding module also constrains the elements to lie between

−1.0 and 1.0 as required by our algorithm to generate valid

images.
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Adversarial Loss
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Figure 2. Architecture of AttGAN Networks. As compared to

Fader Networks, the discriminator/classifier pair is used to anal-

yse the reconstruction of the image with the original semantic at-

tributes. Enforcing the decoder to construct both the original and

the semantically transformed image results in the decoupling of

the semantic and the invariant data.

D. Results

Attack Type Attributes Accuracy of

target model

(%)

Random Sam-

pling (%)

Single Attribute

Attack

A1 70.0 87.0

A2 61.0 93.0

A3 48.0 88.0

Multi Attribute

Attack

A1,A5,A6 12.0 86.0

A2,A5,A6 7.00 85.0

A1,A2,A7 28.0 84.0

Cascaded Multi

Attribute Attack

A1-A2-A3 30.0 68.0

A1-A3-A4 31.0 80.0

A2-A3-A4 42.0 68.0

Table 2. Performance of the Semantic Adversarial Example un-

der various Adversarial Fader Networks implementations for the

binary age classifier. Legend for attributes: A1-Eyeglasses, A2-

Gender, A3-Nose shape, A4-Eye shape, A5-Chubbiness, A6-Pale

Skin, A7-Smiling. Observe that as the number of perturbed at-

tributes increase, the semantic attacks become more effective. In

comparison to worst-of-10 random sampling [8] of the attribute

space, our optimization framework is more effective at finding se-

mantic adversarial examples. Note that the performance of our

semantic attacks fare very well to decrease the accuracy of the age

classifier as well like the gender classifier.

Our additional experiments on the binary age classifier

show that our approach is able to generate adversarial ex-

amples for other classifiers trained on the CelebA dataset

(See Table 2). Note that our observations regarding the in-

creasing effectiveness of our attack approach as the num-

ber of attributes we perturb increase, holds even for a new

classifier. We also compare the performance of our attack

with worst-of-10 random sampling (similar to the approach

in [8].) This proves that our approach is successful at gen-

erating semantic adversarial examples.
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Qualitative Results for Attacks on Binary Gender Classifier

(a) (b) (c) (d) (e) (f) (g) (h) (i)
Figure 3. Semantic adversarial examples generated with multiple attribute implementation using Adversarial AttGAN. The first, fourth and

seventh columns contain the original images. We show adversarial examples generated under the attributes: (b),(e) and (h) Eyeglasses-

Mustache-Age-Pale Skin-Young-Black Hair and (c),(f) and (i)Eyeglasses-Mustache-Pale skin-Age-Bushy eyebrows-Black hair. The qual-

ity of the images produced by the Adversarial AttGAN are sharper than those produced by the Adversarial Fader Networks.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)
Figure 4. Semantic adversarial examples generated with multiple attribute implementation using Adversarial AttGAN. The first, fourth and

seventh columns contain the original images. We show adversarial examples generated under the attributes: (b),(e) and (h) Eyeglasses-

Mustache-Age-Pale Skin-Young-Black Hair and (c),(f) and (i)Eyeglasses-Mustache-Pale skin-Age-Bushy eyebrows-Black hair. The qual-

ity of the images produced by the Adversarial AttGAN are sharper than those produced by the Adversarial Fader Networks.
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(a) (b) (c) (d) (e) (f)
Figure 5. Semantic adversarial examples generated with Single attribute implementation using Adversarial Fader Networks. Columns

(a),(c) and (e) contain the original images. We show adversarial examples generated under the attributes: (b),(d) and (f) Eyeglasses, Nose

shape and Age respectively.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Figure 6. Semantic adversarial examples for Multi-attribute and Cascaded Adversarial Fader network attacks. Columns (a), (c), (e), (g),

(i) are original images. Columns (b): Multi-attribute Eyeglasses,Age,Smile, (d): Multi-attribute Pale Skin,Eyeglasses,Chubbiness, (f):

Multi-attribute Age,Chubbiness,Pale Skin, (h): Cascaded Eyeglasses-Age-Nose shape, (j): Cascaded Nose shape-Narrow Eyes-Age
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(a) (b) (c) (d) (e) (f) (g) (h)
Figure 7. Columns (a), (c), (e), (g) show original images and columns (b), (d), (f) and (h) show the corresponding adversarial images

produced by implementing the algorithm from Xiao et al. [47]. As can be clearly seen although the adversarial examples are missclassified

by the deep gender classifier, the produced adversarial images are not semantically valid.

(a) (b) (c) (d) (e) (f) (g) (h)
Figure 8. Semantic adversarial examples produced by Attribute GAN trained on Time of Day labels from BDD dataset[51]. Columns (a),

(c), (e), (g) are original images. Rows (1) through (6) and columns (a) to (f) show adversarial examples of cars getting miss-classified as

traffic signs or trucks. Column (h) shows adversarial examples of traffic signs being miss-classified as cars. Row 7, columns (b) and (f)

shows examples as trucks getting miss-classified as cars. Row 7, column d shows an adversarial example of a truck getting miss-classified

as a traffic sign.

10



References

[1] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Syn-

thesizing robust adversarial examples. In ICML, 2018.

1

[2] S. Boyd and L. Vandenberghe. Convex Optimization.

Cambridge University Press, 2004. 3

[3] N. Carlini and D. A. Wagner. Towards evaluating the

robustness of neural networks. 2017 IEEE Symposium

on Security and Privacy (SP), 2017. 1, 4

[4] X. Chen, Y. Duan, R. Houthooft, J. Schulman,

I. Sutskever, and P. Abbeel. Infogan: Interpretable rep-

resentation learning by information maximizing gen-

erative adversarial nets. In NeurIPS, 2016. 2

[5] X. Chen, C. Liu, B. Li, K. Lu, and D. Song. Targeted

Backdoor Attacks on Deep Learning Systems Us-

ing Data Poisoning. arxiv preprint, abs/1712.05526,

2017. 3

[6] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and

J. Choo. Stargan: Unified generative adversarial net-

works for multi-domain image-to-image translation.

In CVPR, 2018. 2

[7] A. Dabouei, S. Soleymani, J. M. Dawson, and N. M.

Nasrabadi. Fast geometrically-perturbed adversarial

faces. WACV, 2019. 1

[8] L. Engstrom, D. Tsipras, L. Schmidt, and A. Madry.

A rotation and a translation suffice: Fooling

cnns with simple transformations. arxiv preprint,

abs/1712.02779, 2017. 5

[9] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rah-

mati, C. Xiao, A. Prakash, T. Kohno, and D. X. Song.

Robust physical-world attacks on deep learning visual

classification. CVPR, 2018. 1

[10] A. Fawzi, O. Fawzi, and P. Frossard. Analysis of clas-

sifiers’ robustness to adversarial perturbations. Ma-

chine Learning, 107, 2018. 1

[11] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining

and harnessing adversarial examples. In ICLR, 2015.

1

[12] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. C. Courville, and

Y. Bengio. Generative adversarial nets. In NeurIPS,

2014. 2

[13] T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Iden-

tifying vulnerabilities in the machine learning model

supply chain. arxiv preprint, abs/1708.06733, 2017. 2

[14] Z. He, W. Zuo, M. Kan, S. Shan, and X. Chen. Attgan:

Facial attribute editing by only changing what you

want. arxiv preprint, 2017. 2, 5

[15] G. Hinton, N. Srivastava, and K. Swersky. Lecture 6a,

overview of mini-batch gradient descent. 4

[16] T. Kaneko, K. Hiramatsu, and K. Kashino. Generative

attribute controller with conditional filtered generative

adversarial networks. CVPR, 2017. 2

[17] T. Kim, B. Kim, M. Cha, and J. Kim. Unsupervised

visual attribute transfer with reconfigurable generative

adversarial networks. arxiv preprint, abs/1707.09798,

2017. 2

[18] D. Kingma and J. Ba. Adam: a method for stochastic

optimization (2014). In ICLR, 2015. 4

[19] D. P. Kingma and M. Welling. Auto-encoding varia-

tional bayes. arxiv preprint, abs/1312.6114, 2014. 2

[20] P. W. Koh and P. Liang. Understanding black-box pre-

dictions via influence functions. In JMLR, volume 70,

2017. 2

[21] A. Kurakin, I. J. Goodfellow, and S. Bengio. Adver-

sarial examples in the physical world. arxiv preprint,

abs/1607.02533, 2017. 1

[22] G. Lample, N. Zeghidour, N. Usunier, A. Bordes,

L. Denoyer, et al. Fader networks: Manipulating im-

ages by sliding attributes. In NeurIPS, 2017. 2

[23] A. B. L. Larsen, S. K. Sønderby, and O. Winther. Au-

toencoding beyond pixels using a learned similarity

metric. In ICML, 2016. 2

[24] M. Li, W. Zuo, and D. Zhang. Convolutional net-

work for attribute-driven and identity-preserving hu-

man face generation. arxiv preprint, abs/1608.06434,

2016. 2

[25] M. Li, W. Zuo, and D. Zhang. Deep identity-

aware transfer of facial attributes. arxiv preprint,

abs/1610.05586, 2016. 2

[26] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised

image-to-image translation networks. In NeurIPS,

2017. 2

[27] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning

face attributes in the wild. In ICCV, 2015. 4

[28] M. Mirza and S. Osindero. Conditional generative ad-

versarial nets. arxiv preprint, abs/1411.1784, 2014. 2

[29] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and

P. Frossard. Universal adversarial perturbations.

CVPR, 2017. 1

[30] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard.

Deepfool: A simple and accurate method to fool deep

neural networks. CVPR, 2016. 1

[31] S.-M. Moosavi-Dezfooli, A. Fawzi, J. Uesato, and

P. Frossard. Robustness via curvature regularization,

and vice versa. In CVPR, 2019. 1

[32] K. R. Mopuri, U. Ojha, U. Garg, and R. V. Babu. Nag:

Network for adversary generation. CVPR, 2018. 1

11



[33] A. Odena, C. Olah, and J. Shlens. Conditional im-

age synthesis with auxiliary classifier gans. In ICML,

2017. 2

[34] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson,

Z. B. Celik, and A. Swami. The limitations of deep

learning in adversarial settings. EuroS&P, 2016. 1

[35] G. Perarnau, J. van de Weijer, B. Raducanu, and J. M.
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