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A. Training Details

We give details of the parameters used for training the uni-
versal segmentation models in various settings. We use the
openly available PyTorch implementation of dilated resid-
ual network [4], with encoders designed using ResNet-18
(drn-d-22), ResNet-50 (drn-d-54) as well as ResNet-101
(drn-d-105) architectures. The decoder consists of a 1x1
convolution layer followed by a bilinear upsampling layer.
We train every model on 2 Nvidia GeForce GTX 1080 GPUs
for 200 epochs. During training, we use a crop size of
512x512 for Cityscapes and IDD datasets, 360x480 for the
Camvid dataset and 480x640 for the SUN-RGB dataset. Val-
idation mIoUs are reported on the standard resolutions from
the dataset. We employ SGD learning algorithm with an
initial learning rate of 0.001 and a momentum of 0.9, along
with a poly learning rate schedule with a power of 0.9 [1].
We use a batch size of 10, and take the embedding dimension
to be 128. The default values for α and β are taken to be 1.

B. Label Embeddings

B.1. Calculating the label embeddings

In this section, we describe the method used to obtain
the vector representations for the labels. For each dataset
separately, we train an end-to-end segmentation network
from scratch using only the limited training data available
in that dataset. We use this trained segmentation network
to calculate the encoder outputs of the training data at each
pixel. Typically, the size of the output dimension of the
encoder at each pixel (512 for a ResNet encoder) is not equal
to the dimension of the label embeddings (d=128, in our
case). So we first apply a dimensionality reduction technique
like PCA to reduce the dimension of the outputs to match
the dimension of the label embeddings d, and then calculate
the class wise centroids to obtain the label embeddings.

Method N=50 N=100

CS CVD Avg. CS CVD Avg.

Ours[θ = 0.5] 33.28 48.7 40.99 33.51 49.49 41.50

Ours[Word2Vec] 33.48 53.19 43.34 36.18 52.72 44.45

Ours[K=1] 34.01 53.23 43.62 41.03 54.62 47.83
Ours[K=3] 35.23 52.38 43.81 41.82 54.96 48.39
Ours[K=5] 33.76 52.77 43.27 40.08 55.02 47.55

Direct SER 21.36 35.24 28.30 23.7 30.67 27.19

Table 1: Extension of Table 3 from the original paper. θ is the
update factor during training, and the default value is 1. K is the
number of embeddings per label. Ours[Word2Vec] uses word
vectors as label embeddings. The model gives best performance
for K=3, θ = 1 while using prototype embeddings.

B.2. Updating the label embeddings

In our original experiments, we fixed the pretrained label
embeddings over the phase of training the universal model.
Here, we present a method to jointly train the segmentation
model as well as the label embeddings. We initialize the em-
beddings with the values computed from the pretrained net-
works, and make use of the following exponentially weighted
average rule to update the centroids at the tth time step.

c
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In Eq (1), c(k)t−1 denotes the centroids at the (t−1)th time step,
Ft is the state of the encoder module at the tth time step and
µL calculates the class wise centroids. θ is the update factor,
where a value of θ = 1 implies that the centroids are not
updated from their initial state, and a value of θ = 0 means
that the centroids are calculated afresh at each update. We
make an update to the centroids after every mini-batch of the
original training data.

From Table 1, experiments with θ = 0.5 suggests that
jointly training the network as well as updating the label
embeddings reduces the performance compared to having
fixed label embeddings. We believe that this is primarily



due to having insufficient training data for jointly updating
embeddings as well as the network weights, although this
merits a deeper investigation.

B.3. Multiple Label Embeddings

Many labels in a segmentation dataset often appear in
more than one visual form or modalities. For example, road
class can appear as dry road, wet road, shady road etc., or a
class labeled as building can come in different structures and
sizes. To better capture the multiple modalities involved in
the visual information of the label, we propose using multiple
embeddings for each label instead of a single mean centroid.
This is analogous to polysemy in vocabulary, where many
words can have multiple meanings and can occur in different
contexts, and context specific word vector representations
are used to capture this behavior. To calculate the multi-
ple label embeddings, we perform K-means clustering of
the pixel level encoder feature representations calculated
from networks pretrained on the limited supervised data,
and calculate similarity scores with all the multiple label
embeddings.

Table 1 shows that using K=3 embeddings per label gives
an advantage over using 1 embedding per label, so appar-
ently some amount of over segmentation helps. However,
further increasing K to 5 hurts the performance, as not all the
labels benefit from having multiple modalities per label. So,
an interesting future direction can be to examine optimum
number of embeddings per label.

Particularly, from Table 2, it is evident that classes like
Road, Building, Person etc. benefit largely from having
multiple embeddings per label.

B.4. Choice of label embeddings

In our work, we chose the pixel level class prototypes to
be the label embeddings. We believe that this helps in better
capturing visual information from the images compared to
other approaches like Word2Vec [2]. To this end, we provide
results of our approach replacing the prototype label embed-
dings with word vectors of the labels, by using the publicly
available 128 dimensional word vectors for the labels from
the Cityscapes and CamVid datasets.

From Table 1, having class prototypes as label embed-
dings, which are computed from the labeled data, performs
better than using Word2vec based embeddings, which cap-
ture semantics of the word meaning rather than the visual
appearance of the label. The performance improvement is
more evident in case of N=100, which demonstrates that in
presence of sufficient labeled data, class prototypes are better
suited as label embeddings than word vector representations.
Similar observations have been made in [3] as well.

C. Direct Softmax Entropy Regularization
Entropy regularization is used to enhance the confidence

of predictions made on unlabeled samples. In the case of
deep neural networks, applying this directly to the softmax
scores will make the predictions confident by simply increas-
ing the weights of the last layer. So, we follow an approach
where we calculate similarity between normalized label pro-
totypes and encoder embeddings through our entropy mod-
ule. Direct SER result from Table 1 further demonstrates the
fact that applying SER (softmax entropy regularization) di-
rectly to our network shows inferior performance compared
to the proposed entropy module based approach.

D. Qualitative examples
From the qualitative examples presented in Figure 1 for

Cityscapes and Figure 2 for IDD, we can observe that the
entropy module is particularly useful in better segmentation
of finer objects and foreground classes.
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K=1 86.3 77.23 17.13 84.99 53.35 70.57 31.99 32.45 72.94 36.61 37.22 54.61
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Table 2: Class-wise IoU values for the 19 classes in Cityscapes dataset and 11 classes in the CamVid dataset for different K, for
N=100 on Resnet-18.

(a) Original Image (b) Without Entropy Module (c) With Entropy Module (d) Ground Truth Segmentation

Figure 1: Qualitative examples from the cityscapes dataset with and without the proposed entropy regularization module, when
trained on a universal model on CS+CamVid.



(a) Original Image (b) Without Entropy Module (c) With Entropy Module (d) Ground Truth Segmentation

Figure 2: Qualitative examples from the IDD dataset with and without the proposed entropy regularization module, when trained on a
universal model on IDD+CS.


