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Appendix A: Convergence of the EMA

In our paper, we state that the EMA teacher is coupled
with the student in the existing Teacher-Student methods.
We provide below a formal proposition for this statement
and a simple proof.

Proposition 1. Given a sequence { s; }ten C R™ and let
s = asi_ 1+ (1 —a)s, where 0 < a < 1, t € N,
sy € R™. If { st hren converges to S € R™, then { s} }en
converges to S as well.

Proof. By the definition of convergence, if { s; }ten con-
verges to S, we have: Ve > 0, 3T € N such that V¢t > T,
|s¢ — S| < e. First, when ¢t > T, by the formula of the sum
of a finite geometric series, we rewrite S and s; as:
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Since T is finite, a”s) and 3., a7 ~%s; are bounded.
Thus, 3C € RT such that:

T
laTsy + (1 - a) ZaTﬁisi\ <C.
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Since 0 < a < 1, we have lim;_, o = 0. Thus, 37" > 0
such that V£ > T",a' < min{ &, 1§ }. Then, after sub-
stituting Eq. | into |s; — S| and applying the Triangular In-
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equality, we have:
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Then V¢ > (T' + T"), we have:
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Combining Eq. 2, 3, 4, 5, we have |s} — S| < 3¢, V& >
(T+1T"),1e., {s;}yen converges to S. O

Appendix B: Model Architectures

The model architecture used in our CIFAR-10, CIFAR-
100, and SVHN experiments is the 13-layer convolutional
network (13-layer CNN), which is the same as previ-
ous works [6, 3, |, 4, 5]. We implement it following
FastSWA [ 1] for comparison. Table | describes its architec-
ture in details. For ImageNet experiments, we use a 50-
layer ResNeXt[7] architecture, which includes 3+4+6+3
residual blocks and uses the group convolution with 32
groups.



Table 1: The 13-layer CNN for our SSL experiments.

Table 2: The small CNN for domain adaptation.

Layer Details Layer Details

input 32 x 32 x 3 RGB image input 28 x 28 x 1 Gray image

augmentation random translation, horizontal flip augmentation  gaussian noise ¢ = 0.15

convolution 128, 3 x 3, pad = same, LReLU a = 0.1 convolution 16, 3 x 3, pad = same, LReLU o = 0.1
convolution 128, 3 x 3, pad = same, LReLU o= 0.1 pooling 2 x 2, type = maxpool

convolution 128, 3 x 3, pad = same, LReLU o = 0.1 convolution 32, 3 x 3, pad = same, LReLU oo = 0.1
pooling 2 X 2, type = maxpool pooling 2 x 2, type = maxpool

dropout p=0.5 dropout p=0.5

convolution 256, 3 x 3, pad = same, LReLU a = 0.1 convolution 32, 3 x 3, pad = same, LReLU a = 0.1
convolution 256, 3 x 3, pad = same, LReLU o= 0.1 pooling 6 x 6 =1 x 1, type = avgpool
convolution 256, 3 x 3, pad = same, LReLU a = 0.1 dense 32 = 10, softmax

pooling 2 X 2, type = maxpool

dropout p=0.5 . . .

conlx)folution 512, 3 x 3, pad = valid, LReLU o = 0.1 Appendlx D: Domain Adaptatlon Setups
convolution 256, 1 x 1, LReLU o= 0.1 We design a small convolutional network for the domain
convolution 128, 1 x 1, LReLU ar = 0.1 adaptation from USPS (source domain) to MNIST (target
pooling 6 x 6= 1x1, type = avgpool domain). The structure is shown in Table 2. We train all
dense 128 = 10, softmax

Appendix C: Semi-supervised Learning Setups

In our work, all experiments use the SGD optimizer with
the nesterov momentum set to 0.9. The learning rate is ad-
justed by the function v = 7o * (0.5 + cos((t — 1) x w/N)),
where ¢ is the current training step, N is the total number
of steps, and ~yg is the initial learning rate. We present the
settings of the experiments on each dataset as follows.

CIFAR-10: On CIFAR-10, we set the batch size to 100
and half of the samples in each batch are labeled. The initial
learning rate is 0.1. The weight decay is le~*. For the
stabilization constraint, we set its coefficient Ao = 100 and
ramp it up in the first 5 epochs. We set \; = 10. The
confidence threshold for the stable samples is 0.8.

CIFAR-100: On CIFAR-100, each minibatch contains
128 samples, including 31 labeled samples. We set the ini-
tial learning rate to 0.2 and the weight decay to 2e~*. The
confidence threshold is & = 0.4. Other hyperparameters are
the same as CIFAR-10.

SVHN: The batch size on SVHN is 100, and each mini-
batch contains only 10 labeled samples. The initial learning
rate is 0.1, and the weight decay is 1e~*. The stabilization
constraint is scaled by 10 (ramp up in 5 epochs). We use the
confidence threshold £ = 0.8.

ImageNet: We validate our method on ImageNet by
the ResNeXt-50 architecture on 8 GPUs with batch size 320
and half of the batch are labeled samples. Each sample is
augmented following [2] and is resized to 224 x 224. We
warm-up the learning rate from 0.08 to 0.2 in the first 2
epochs. The model is trained for 60 epochs with the weight
decay set to 5e~5, the stabilization constraint coefficient set
to 1000, and a small confidence threshold of 0.01.

experiments for 100 epochs by the SGD optimizer with the
nesterov momentum set to 0.9 and the weight decay set to
le~*. The learning rate declines from 0.1 to 0 by a co-
sine adjustment. Each batch includes 256 samples while
32 of them are labeled. We randomly extract 7000 bal-
anced samples from MNIST for target-supervised experi-
ments, and other experiments are done by using the training
set of USPS. The coefficient of the stabilization constraint
is Ao = 1.0. We also ramp it up in the first 5 epochs. The
confidence threshold is & = 0.6. We discover that the input
noise with ¢ = 0.15 is vital for the Mean Teacher but not
for our method in this experiment.
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