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Appendix A: Convergence of the EMA

In our paper, we state that the EMA teacher is coupled
with the student in the existing Teacher-Student methods.
We provide below a formal proposition for this statement
and a simple proof.

Proposition 1. Given a sequence { st }t∈N ⊆ Rm and let
s′t = α s′t−1 + (1 − α) st, where 0 < α < 1, t ∈ N,
s′0 ∈ Rm. If { st }t∈N converges to S ∈ Rm, then { s′t }t∈N
converges to S as well.

Proof. By the definition of convergence, if { st }t∈N con-
verges to S, we have: ∀ε > 0, ∃T ∈ N such that ∀t > T ,
|st − S| < ε. First, when t > T , by the formula of the sum
of a finite geometric series, we rewrite S and s′t as:

S = (1− α) 1− α
t−T

1− α
S + αt−T S

= (1− α)
t∑

i=T+1

αt−iS + αt−TS ,

s′t = αts′0 + (1− α)
t∑
i=1

αt−isi

= αts′0 + (1− α)
T∑
i=1

αt−isi + (1− α)
t∑

i=T+1

αt−isi .

(1)

Since T is finite, αT s′0 and
∑T
i=1 α

T−isi are bounded.
Thus, ∃C ∈ R+ such that:

|αT s′0 + (1− α)
T∑
i=1

αT−isi| < C .

Since 0 < α < 1, we have limt→∞ αt = 0. Thus, ∃T ′ > 0
such that ∀t > T ′, αt < min{ ε

C ,
ε
|S| }. Then, after sub-

stituting Eq. 1 into |s′t − S| and applying the Triangular In-
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equality, we have:

|s′t − S| ≤ |αts′0 + (1− α)
T∑
i=1

αt−isi|

+ |(1− α)
t∑

i=T+1

αt−i(si − S)|+ |αt−TS| .
(2)

Then ∀t > (T + T ′), we have:

|αts′0 + (1− α)
T∑
i=1

αt−isi|

= αt−T |αT s′0 + (1− α)
T∑
i=1

αT−isi| <
ε

C
C < ε ,

(3)

|(1− α)
t∑

i=T+1

αt−i(si − S)|

≤ (1− α)
t∑

i=T+1

αt−i|si − S| = (1− αt−T ) ε < ε ,

(4)

|αt−TS| < ε

|S|
|S| < ε . (5)

Combining Eq. 2, 3, 4, 5, we have |s′t − S| < 3ε, ∀t >
(T + T ′), i.e., {s′t}y∈N converges to S.

Appendix B: Model Architectures

The model architecture used in our CIFAR-10, CIFAR-
100, and SVHN experiments is the 13-layer convolutional
network (13-layer CNN), which is the same as previ-
ous works [6, 3, 1, 4, 5]. We implement it following
FastSWA [1] for comparison. Table 1 describes its architec-
ture in details. For ImageNet experiments, we use a 50-
layer ResNeXt [7] architecture, which includes 3+4+6+3
residual blocks and uses the group convolution with 32
groups.
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Table 1: The 13-layer CNN for our SSL experiments.

Layer Details

input 32× 32× 3 RGB image
augmentation random translation, horizontal flip
convolution 128, 3× 3, pad = same, LReLU α = 0.1
convolution 128, 3× 3, pad = same, LReLU α = 0.1
convolution 128, 3× 3, pad = same, LReLU α = 0.1
pooling 2× 2, type = maxpool
dropout p = 0.5
convolution 256, 3× 3, pad = same, LReLU α = 0.1
convolution 256, 3× 3, pad = same, LReLU α = 0.1
convolution 256, 3× 3, pad = same, LReLU α = 0.1
pooling 2× 2, type = maxpool
dropout p = 0.5
convolution 512, 3× 3, pad = valid, LReLU α = 0.1
convolution 256, 1× 1, LReLU α = 0.1
convolution 128, 1× 1, LReLU α = 0.1
pooling 6× 6⇒ 1× 1, type = avgpool
dense 128⇒ 10, softmax

Appendix C: Semi-supervised Learning Setups

In our work, all experiments use the SGD optimizer with
the nesterov momentum set to 0.9. The learning rate is ad-
justed by the function γ = γ0 ∗ (0.5+ cos((t− 1) ∗ π/N)),
where t is the current training step, N is the total number
of steps, and γ0 is the initial learning rate. We present the
settings of the experiments on each dataset as follows.

CIFAR-10: On CIFAR-10, we set the batch size to 100
and half of the samples in each batch are labeled. The initial
learning rate is 0.1. The weight decay is 1e−4. For the
stabilization constraint, we set its coefficient λ2 = 100 and
ramp it up in the first 5 epochs. We set λ1 = 10. The
confidence threshold for the stable samples is 0.8.

CIFAR-100: On CIFAR-100, each minibatch contains
128 samples, including 31 labeled samples. We set the ini-
tial learning rate to 0.2 and the weight decay to 2e−4. The
confidence threshold is ξ = 0.4. Other hyperparameters are
the same as CIFAR-10.

SVHN: The batch size on SVHN is 100, and each mini-
batch contains only 10 labeled samples. The initial learning
rate is 0.1, and the weight decay is 1e−4. The stabilization
constraint is scaled by 10 (ramp up in 5 epochs). We use the
confidence threshold ξ = 0.8.

ImageNet: We validate our method on ImageNet by
the ResNeXt-50 architecture on 8 GPUs with batch size 320
and half of the batch are labeled samples. Each sample is
augmented following [2] and is resized to 224 × 224. We
warm-up the learning rate from 0.08 to 0.2 in the first 2
epochs. The model is trained for 60 epochs with the weight
decay set to 5e−5, the stabilization constraint coefficient set
to 1000, and a small confidence threshold of 0.01.

Table 2: The small CNN for domain adaptation.

Layer Details

input 28× 28× 1 Gray image
augmentation gaussian noise ζ = 0.15
convolution 16, 3× 3, pad = same, LReLU α = 0.1
pooling 2× 2, type = maxpool
convolution 32, 3× 3, pad = same, LReLU α = 0.1
pooling 2× 2, type = maxpool
dropout p = 0.5
convolution 32, 3× 3, pad = same, LReLU α = 0.1
pooling 6× 6⇒ 1× 1, type = avgpool
dense 32⇒ 10, softmax

Appendix D: Domain Adaptation Setups
We design a small convolutional network for the domain

adaptation from USPS (source domain) to MNIST (target
domain). The structure is shown in Table 2. We train all
experiments for 100 epochs by the SGD optimizer with the
nesterov momentum set to 0.9 and the weight decay set to
1e−4. The learning rate declines from 0.1 to 0 by a co-
sine adjustment. Each batch includes 256 samples while
32 of them are labeled. We randomly extract 7000 bal-
anced samples from MNIST for target-supervised experi-
ments, and other experiments are done by using the training
set of USPS. The coefficient of the stabilization constraint
is λ2 = 1.0. We also ramp it up in the first 5 epochs. The
confidence threshold is ξ = 0.6. We discover that the input
noise with ζ = 0.15 is vital for the Mean Teacher but not
for our method in this experiment.
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