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Abstract

In this supplementary material, we provide qualitative as
well as quantitative comparisons as mentioned in section 5
of the main paper along with additional details of the pro-
posed architecture and display capture setup.

1. Display Capture Setup

To capture a display-captured image, the image is re-
sized to 1280x1280 using bicubic interpolation and dis-
played on the center 1280x1280 pixels of a 25-inch mon-
itor with 2560x1440 pixels placed approximately one foot
from the FlatCam device. With this setup, all 1280x1280
pixels are within the sensors field of view. This setup is
fixed for all image captures such that the alignment of the
monitor pixels to the camera pixels is uniform throughout
both training and test. The FlatCams white balance setting
is fixed to be the white balance setting obtained in the Flat-
Cams (i.e. PointGrey Flea3) automatic white balance mode
when an all-white image is displayed on the monitor. The
exposure time is set to PointGreys automatic mode, and the
cameras gain is set to OdB. Figure 1 shows the setup.

2. More detail on trainable inversion stage

The dimension of W7 in our experiments was 256 x 500
while that of W5 was 620 x 256 as our network was trained
to reconstruct scenes of spatial resolution 256 x 256 from
measurements of spatial resolution 500 x 620. The per-
ceptual enhancement stage has the same input and output
spatial resolution.
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Figure 1. The display capture setup.

3. Comparison of different architectures for
perceptual enhancement stage

In our proposed model, we use U-Net[3] for the percep-
tual enhancement stage. In this section, we compare the
performance of U-Net[3] with 3 different architectures and
justify its efficacy over them. For fairness in comparison,
we keep the same combination loss as defined for the pro-
posed model. We use the transpose initialization scheme
described in section 3.1.1 of the original paper. We report
PSNR, SSIM and Ma Score[2] for the 100 test images from
the display captured dataset. Perceptual score in table 1
refers to the Ma score. Qualitative comparison is provided
in figure 3 and 4. The architectures we compared for the
perceptual enhancement stage are:

U-Net-Residual: This is a dense version of U-Net that
we experimented. We replace one of the convolutional
blocks in each stage of the encoder and decoder of U-Net
with residual blocks. Each of the residual blocks has 2
convolutional layers. We call this U-Net-Residual. Figure



| }

Convolution

%

} Convolution

v
Batch Batch
Normalization Normalization

Convolution

Batch
Normalization

RelU RelU
i J RelU
4
Convolution Residual Block l

Convolution

Batch Batch l
Normalization Normalization

+ —

RelU RelU l

} |

(a) U-Net (b) U-Net-Residual (c¢) Residual Block

Figure 2. Basic blocks for U-Net used in the proposed architecture
and U-Net-Residual.

2 shows the basic block of the U-Net we used for our
perceptual enhancement stage along with the basic block
of the U-Net-Residual. It can be seen that U-Net-Residual
is much denser compared to U-Net used in the proposed
model.

DnCNN[5]: We used a 19-layered model of the popular

Architecture || PSNR | SSIM | Perceptual | Time
(in score taken
dB) (in

sec)

RCAN(6] 17.55 0.56 5.12 0.02

DnCNN[5] 17.07 0.55 5.27 0.005

U-NET- 19.55 0.64 6.15 0.01

Residual

U-NET 19.62 | 0.64 6.48 0.006

Ground - 1 8.04 -

Truth

Table 1. Quantitative comparison for different perceptual enhance-
ment stage architectures. RCAN[6] and DnCNN[5] show much
lower PSNR, SSIM and perceptual scores than U-Net and its vari-
ant U-Net-Residual. Although, U-Net-Residual is close to U-Net
used in the proposed architecture in terms of PSNR, SSIM and per-
ceptual score, it takes almost twice the time for a single forward
pass.

denoiser network DnCNN for comparison.

RCANJ[6]: This is the state of the art for super-resolution.
We use the model with 5 residual groups and 10 residual
blocks.

4. Comparison with compressive image recov-
ery methods

We also compare our proposed model with two state of
the art deep learning based compressive image recovery al-
gorithms [1, 4]. Table 2 presents the comparative study of
these methods.

Method PSNR (in dB) | SSIM | Perceptual
score
ISTA-Net[4] 14.57 0.54 2.57
Deep Pixel
Prior[1] 13.46 0.38 2.49
Proposed 19.62 0.64 6.48

Table 2. Comparison with compressive image recovery algorithms.
Average PSNR, SSIM and perceptual scores comparison for dis-
play captured measurements.

5. Video reconstruction

In this section we present our result on the temporal sta-
bility of the proposed reconstruction pipeline for FlatCam
videos. Though we do not explicitly enforce temporal sta-
bility, we observe stability over most of the FOV. However,
some temporal instability is observed in the very dark re-
gions of the FOV. Figure 5 shows some of the measurement
frames along with their reconstructions. Although both tra-
ditional and proposed algorithm provide reasonable tempo-
ral stability, proposed algorithm clearly extracts finer de-
tails. Full video is provided along with the supplementary
file.
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Figure 3. Comparison for display captured measurements. RCAN[6] and DnCNN[5] are unable to restore finer details such as the text in
top row. U-Net-Residual is outperformed by U-Net used in the proposed architecture in restoring these fine details.
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Figure 4. Comparison for direct captured measurements. Both RCAN[6] and DnCNN[5] result in reconstructions with hazy appearance
and color artifacts. This, however, is not seen in both U-Net and U-Net-Residual. It should be noted that U-Net-Residual does not lead to
any improvement over the U-Net used in the proposed architecture despite having a very dense structure.



Figure 5. Reconstruction of video frames. Top row shows the captured measurement, while the second and third row show the Tikhonov
regularized reconstruction and proposed reconstruction respectively.



