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A. Appendix
A.1. Metrics

We use the metrics from [3] and summarize them below.

e Translation (t): Euclidean distance between prediction
and ground-truth ||t, — tg||. dy < 0.5m.

e Scale (s): We measure the average unsigned differ_ence
in log-scale, i.c., A(sp,s) = 235 |logy(si) —
logy (s, )|. We threshold at §5 < 0.2.

e Rotation (q): Geodesic distance between rotations
T5ll1og(RT Rgy)||. dq < 30°. For objects that exhibit
rotational symmetry, we use the lowest error across the
different possible values of 2.

e Shape (V): Following [1], we measure the intersection
over union (IoU) and use threshold 6y = 0.25. As a
higher IOU is better, so we use dy > 0.25 for true posi-
tive.

e Bounding Box overlap (b): The bounding box overlap is
measured using IOU. §, > 0.5.

e Detection: A prediction is considered a true positive
when it satisfies the thresholds for each of the above com-
ponents (¢, ds, dq, Ov,dp). We use Average Precision
(AP) to measure the final detection performance.

A.2. Training Details

Unary Loss Functions. We use the following loss func-
tions to train the unary predictors

e Loss Translation. Ly = ||t, — tg||?

e Loss Scale. L = ||log(s,) — log(sg:)||?

o Loss Rotation. L, = —log(gy:), we minimize the NLL
of the gt bin. g represents a probability distribution over
the 24 bins.

e Loss Shape. Lv = Zn Vn 1Og(vn)+(1—‘/n) log(l—Vn).
V,, are the ground-truth voxels, and V,, are the predicted
voxels

Relative Loss Functions. We use the following loss func-
tions to train the relative predictors

e Loss Translation. Ly¢ = [|t(;),, — t(ij),q¢||. for objects
t(;;) represents relative translation between 4,j.

e Loss Scale. Lys = |log(s(ij),p) — 10g(s(ij),qt)|?, for
objects s(;;) represents relative scale between 1,j.

o Loss Direction. Lq = —log(d,;), we minimize the NLL
of the gt bin. d represents a probability distribution over
the relative directions.

Joint Relative Losses We impose a loss on the joint pre-
diction by combining unary and relative predictions

e Loss Translation. Lj; = ||t* —,:||?, where t* is the joint
prediction computed using Equation 1

e Loss Scale. Ljs = | log(s*) — log(sg:)||%, where s* is
the joint prediction computed using Equation 1

Optimization. We train our network in two stages. In the
first stage of training we use ground truth boxes. We train
for 8 epochs by using adam optimizer with a learning rate of
10~%. During the first 4 epochs of the training we train for
relative and object specific predictions independently and
during next 4 epochs of the training we optimize the whole
model jointly by combining the relative and object specific
estimates. In the next stage we consider overlapping pro-
posals with IOU of over 0.7 with respect to ground truth
boxes and the ground truth boxes as positive proposals to
further make the model robust in the detection setting.

In the NYUv?2 setting we start with a network trained on the
SUNCG dataset and finetune the network for 16 epochs on
the NYU train + val split and evaluate method on the test
split.

Rotation Prediction. We defined A(R, d, t) as a measure
of how inconsistent a predicted rotation R is w.r.t the pre-
dicted relative direction distribution d and relative transla-
tion t. Given a predicted rotation R, we would expect the
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predicted direction to align with the vector R f, where ¢
is unit-normalized. Note that the predicted d is a proba-
bility distribution over possible directions, and let d* de-
note the bin that aligns maximally with R £. We measure
A(R,d,t) by combining measures of how likely this bin is
with how well it agrees with the rotation and translation:
A(R,d,t) = —log p(d*) + (1 — cos(d*, R 1)).

Relative Importance. We use lambda for unary impor-
tance to get t* and s* as 1. In case of rotation we use we
weight for the relative predictions as min(5.0/n, 1) where
n represents number of neighbours of the object. In the
detection setting we create set of valid objects which are
allowed to influence the final predictions for other objects
based upon the detection score. We consider objects with a
score above 0.3 to be part of the valid set and only use them
to get final predictions for other objects.

A.3. Additional Visualizations and Results

We visualize the precision-recall curves in the detection set-
ting using the SUNCG dataset in figure 1. We also visualize
predictions for randomly sampled images in the setting with
known bounding boxes in figure 4.

A 4. Visualization on NYU in Detection Setting

We visualize sample from NYU in the detection setting, and
show comparisons with respect to the baseline. Please refer
to Figure 2.

A.5. Factored3D + CRF Details

We implement the CRF model by creating statistical mod-
els for relative translation, relative scale, and relative direc-
tion for every pair of object categories. We fit a mixture of
10 Gaussian to the data from each pair and modality. At
test time we optimize using this prior assuming access to
ground truth class labels to choose the appropriate prior. For
optimization we use LBFGS [2] and we optimize for 1000
iterations for every example. We visualize the outputs for
CREF + Factored3D model and compare against the baseline
in Figure 3
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Figure 1: We plot the precision-recall (PR) curves for the detection setting for SUNCG and also display the mean Average Precision (AP) values in the
legend. In each of these curves, we vary the criteria used to determine a true positive. This helps us analyze the relative contribution of each component
(translation, rotation, scale) to the final performance.
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Figure 2: Detection Setting for NYU: We visualize sample prediction results in the detection setting Section 4.3 of the main manuscript. We can notice
that relative arrangement between objects is better under the Ours column vs Factored3D.
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Figure 3: Factored3D + CRF in GT Box setting: We visualize sample prediction results in the GT Box setting Section 4.2 of the main manuscript for the
Factored3D + CRF model. The first two rows show examples where the Factored3D + CRF model does better than Factored3D baseline while the next two
rows show the examples where it does worse.
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Figure 4: We visualize predictions for randomly sampled images in the setting with known ground-truth boxes for the SUNCG dataset.



