
ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors

Weicheng Kuo1, Anelia Angelova1, Jitendra Malik2, Tsung-Yi Lin1

1 Google Brain 2 University of California, Berkeley
1{weicheng, anelia, tsungyi}@google.com, 2 malik@eecs.berkeley.edu

1. Overview
This is the supplementary materials to accompany the

ShapeMask paper [6]. Here we present additional experi-
ments, visualizations, an onboard demonstration and more
implementation details.

2. Fully Supervised ShapeMask
Visualization. Figure 1 visualizes the outputs of the

fully supervised ShapeMask. ShapeMask obtains qual-
ity contours for large objects (e.g. humans and animals)
and can handle thin structures (e.g. legs of chairs, skate-
board) and within-category overlaps (e.g. crowds of hu-
mans). Results are generated by class-specific ResNet-101-
FPN model on COCO validation set.

Object detection results. Instance segmentation algo-
rithms are also evaluated by their ability to provide accu-
rate detections [4]. In addition to the instance segmentation
results in Table 2 of the manuscript, we compare Shape-
Mask with leading object detectors in Table 1 on COCO.
With ResNet-101-FPN backbone, our 42.0 AP clearly out-
performs RetinaNet and Mask R-CNN, and is among the
best reported approaches using the same backbone. Ap-
plying a stronger backbone NAS-FPN [3] (as described be-
low), ShapeMask achieves 45.4 AP which is comparable to
SNIP[11] and behind PANet by 2.0 AP. Note that Shape-
Mask does not apply any detection improvement methods
proposed in [1, 5, 11, 9]. This shows that ShapeMask can
function as a competitive object detector as well.

3. Mask Branch Runtime
We study the performance and the mask branch capac-

ity tradeoff in Table 2. All convolution and deconvolution
layers in the mask branch are set to the same number of
channels here. We observe that ShapeMask performance
degrades minimally as the mask branch capacity decreases
dramatically. With 16 channels, the mask branch of Shape-
Mask maintains a competitive AP of 35.8, slightly better
Mask R-CNN, while using 130x fewer parameters and 23x
fewer FLOPs and running at 4.6ms. To our knowledge, this
is the most lightweight and yet competitive mask branch

design for instance segmentation.

4. Model Ablation

To understand our system further, we compare the uni-
form box prior with the learned detection prior, and the
direct mask decoding [4] with the instance conditioned
mask decoding. Table 3 shows the fully supervised sys-
tem ablation results on COCO val2017 using ResNet-101-
FPN. Using either object shape prior or instance embedding
improves from the baseline. Combining both techniques
boosts the performance even further. This demonstrates the
importance of the key components of our algorithm, namely
shape priors and learned embeddings.

5. Applying a different backbone

In ShapeMask framework, the backbone ResNet-101-
FPN model is used for efficiency, but can be easily replaced
by a stronger backbone to improve the accuracy. More
specifically, in the paper we also experiment with [3]. The
replacement of this model, as well as others, is very easy
to do. More specifically, we replace the FPN connections
by NAS-FPN connections which keeps all feature dimen-
sions unchanged and allows us to run the mask branch on
the same input shapes as before. We note that this pro-
vides gains in accuracy at a very small computational cost
(e.g. from 150ms vs 200ms for NAS-FPN) Other strong
backbone models such as ResNext-101-FPN [4] can also be
used.

6. Onboard Demonstration

Figure 2 visualizes the outputs of class-agnostic Shape-
Mask running onboard a robot. ShapeMask is able to cap-
ture detailed contours of many novel objects. The model is
trained on COCO only, so this is an out-of-sample setting.
Results are generated by ResNet-101-FPN using inference
time optimization platform TensorRT.
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Figure 1: Visualization of results of the fully supervised ShapeMask model on the COCO val2017. ShapeMask is able to
obtain quality contours for large objects, handle thin structures, and deal with within-category overlaps.

backbone AP AP50 AP75 APS APM APL

Mask R-CNN [4] ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2
RetinaNet [8] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2
MaskLab [2] Dilated ResNet 101 41.9 62.6 46.0 23.8 45.5 54.2
Cascade R-CNN [1] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2
SNIP [11] DPN-98 45.7 67.3 51.1 29.3 48.8 57.1
PANet [9] Path-Agg. ResNext-101 47.4 67.2 51.8 30.1 51.7 60.0
ShapeMask (ours) ResNet-101-FPN 42.0 61.2 45.7 24.3 45.2 53.1
ShapeMask (ours) ResNet-101-NAS-FPN [3] 45.4 64.2 49.2 27.2 49.0 56.9

Table 1: Object Detection Box AP on COCO test-dev2017. With ResNet-101-FPN backbone, ShapeMask outperforms
RetinaNet and Mask R-CNN, and is among the best reported approaches using the same backbone. With a larger backbone,
ShapeMask achieves comparable performance to SNIP and trails PANet by 2 points without using any techniques from
[1, 5, 11]. All entries are single model results and without test time augmentation.

Model # of Chns. AP Params.
(M)

FLOPs
(M)

Time
(ms)

Mask R-CNN [4] 256 35.4 2.64 530 -
ShapeMask (ours) 128 37.0 1.44 1480 29.1
ShapeMask (ours) 64 36.7 0.36 370 14.0
ShapeMask (ours) 32 36.6 0.09 93 7.0
ShapeMask (ours) 16 35.8 0.02 23 4.6

Table 2: Performance vs. mask branch model capacity. The
performance decreases only slightly with a dramatic de-
crease in the model capacity of the mask branch. With only
16 channels, ShapeMask model achieves 0.4 AP higher than
Mask R-CNN with 130x fewer parameters and 23x fewer
FLOPs. Timing is measured on the mask branch only.

7. Implementation Details
One-stage detection: We adopt RetinaNet1 [8] to gener-
ate bounding box detections for ShapeMask. RetinaNet is a

1https://github.com/tensorflow/tpu/tree/master/models/official/retinanet

Shape Embed. AP AP50 AP75

35.5 56.5 37.9
X 36.7 57.3 38.9

X 36.9 57.3 39.6
X X 37.2 57.6 39.6

Table 3: Ablation results for the fully supervised model.

one-stage detector with a simple system design and compet-
itive performance. We use an image size of 1024 x 1024 and
multiscale training with image scale from 0.8 to 1.2. Note
that other detection methods such as Faster R-CNN [10] can
also be used with ShapeMask.

RoI features: We use the feature pyramid [7] with levels
P3 to P5 to process RoI in different scales for scale normal-
ization. Given a bounding box, we assign the box to feature
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Figure 2: Visualization of ShapeMask running onboard a robot for instance segmentation of table-top objects for the
purposes of grasping. ShapeMask is able to segment many novel objects well, e.g. paper, headphone. This is an out-of-
sample setting because the model is trained on COCO only, but tested on indoor office scenes.

level:

k = m− blog2
L

max(boxh, boxw)
c, (1)

where L is the image size (e.g., 1024) and m is the high-
est feature level (e.g., 5). If k is less than the minimum
level (e.g. 3), the box is assigned to minimum level. At
the assigned level, we take a c × c feature patch centered
on the box. We choose c = L/2m to make sure the entire
object instance always lies inside the patch by the feature
pyramid design [7]. The feature dimension is then reduced
from 256 to 128 by 1x1 convolution. We apply ShapeMask
algorithm on this feature patch X to predict the instance
mask (the same X in figure 5 of the paper). This is a sim-
ple slicing operation, but we note that the “crop and resize”
operation [4, 2] could also work.
Training with jittered groundtruths: Unlike [4, 2] which
sample masks from the object proposals, we directly sample
8 groundtruth masks and their associated boxes per image
for training. This removes the need of object proposal stage
and enables one-stage training for mask prediction. The
sampled groundtruth boxes are jittered by gaussian noise
to better mimic the imperfect boxes produced by the model
during inference time. To be precise, the new box center
(x′c, y

′
c) = (xc + δxw, yc + δyh), and the new box size

(w′, h′) = (eδww, eδhh), where (x, y, w, h), (x′, y′, w′, h′)
are the noiseless/jittered groundtruth boxes respectively,
and δs is gaussian noise ∼ N(µ = 0, σ = 0.1). We rep-
resent these boxes by uniform box priors (see B in figure 4
of the paper) for training the mask branch. Jittering is es-
sential to help ShapeMask learn to be robust against noisy
detections at test time.
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