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Figure 1: Alignment Network

1. Network Architectures

Fig. 1, 2 illustrate the detailed network architectures of
our copy-and-paste networks described in Sec.3 of the main
paper. The top and the bottom of each network represent
inputs and outputs, respectively. Cout, Cmask are outputs
of the context matching module described in Sec.3.2. In
Fig. 1, “Avg Pool” denotes the average pooling over all
location h × w. All the convolutional layers are followed
by ReLU [3] for the non-linearity except for the last layer
of decoder(Fig. 2).

2. More Results

In addition to Fig.7 in the main paper, we present more
qualitative video results1 for the video object removal task.
We compare our results with the methods in [1, 2]. The
input videos and masks used in the experiments are DAVIS
datasets[4, 5] with shadow annotations provided by [1].

We also present more application results (Fig. 3) for the

1Qualitative video results: https://youtu.be/BKdxR9bQQMU
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Figure 2: Copy-and-paste Network

restoration of under/over-exposed images. The results show
that our method improves the texture and the color of the
images.
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