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1. Overview
This document provides derivations, explanations, and more results supporting the content of the paper submission titled,

“Stochastic Exposure Coding for Handling Multi-ToF-Camera Interference”.

2. Depth Standard Deviation with Sinusoid Coding Scheme
All approaches are compared in terms of depth standard deviations since only random errors are dominant source of

depth errors after systematic errors are removed. We will derive the base depth standard deviation when the sinusoid coding
scheme is used in a single C-ToF camera case as a first step. Next, the depth standard deviations for the AC-orthogonal
(ACO) approach and the proposed approaches will be derived from it. If the sinusoid coding scheme is used, and the depth
value is recovered by the 4-bucket method [4] (K = 4 intensity values are used in depth estimation: Eq. 6) in a single camera
case, the depth standard deviation is:
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where f0 is a modulation frequency, T is the total integration time, es, and ea are the average number of signal photons (due
to the primary camera’s own source), and ambient photons (due to ambient source), respectively, incident on the pixel per
unit time. The derivation of Eq. 1 is as follows.

For the sinusoid coding scheme, modulation function M(t) and demodulation function D(t) are defined as sinusoids:

M(t) = D(t) = 1 + cos(2πf0t), (2)

where f0 is a modulation frequency. The radiance of the reflected light incident on a sensor pixel p is:
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where d is the distance between the camera and the scene point imaged at p, c is the speed of light. Ps is average power of
the light source with an assumption of 1

T0

∫
T0
M(t) dt = 1. α is a scene-dependent scale factor that contains scene albedo,

reflectance properties and light fall-off. The correlation or intensity value C(p; d) measured at pixel p is:
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∫
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where s is a camera-dependent scale factor encapsulating sensor gain and sensitivity, T is the total integration time, and Pa
is average power of ambient light incident on the scene. We take K = 4 intensity measurements Ck(d), k ∈ {1, . . . , 4} by
phase-shifting the demodulation function D(t) by a different amount ψk = π

2 (k − 1) , k ∈ {1, . . . , 4}:
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, k ∈ {1, . . . , 4} , (5)



where es = sαPs, and ea = sPa are the average number of signal photons, and ambient photons, respectively, incident on the
pixel per unit time. We drop the argument p for brevity. The depth value d can be recovered using the 4-bucket method [4]:
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)
. (6)

Using the error propagation rule, the depth standard deviation σ can be obtained by:
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where Var (·) is a variance operator. Since Var
(
Ck
)
= Ck in Poisson distribution,
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3. Depth Standard Deviation with Bipolar Demodulation
We assumed the demodulation function D(t) is unipolar (0 ≤ D(t) ≤ 2) in the previous derivation. The demodulation

functions can be also electronically implemented as bipolar (−1 ≤ D(t) ≤ 1). With zero-mean bipolar demodulation
functions (

∫
T0
D(t)dt = 0), Pa and the DC component of R(t) can be cancelled out during integration in correlation

computation (Eq. 4). However, shot noise by Pa and the DC component of R(t) contributes to random depth errors. If
we use a bipolar sinusoid demodulation function instead of a unipolar one, Eq 1 is replaced with:
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Compared to Eq. 1, Eq. 9 is scaled down by
√
2/π and everything else is the same. Please note that this is specific for the

sinusoid coding scheme. If other coding schemes are used, the equations can be different. The derivation of Eq. 9 is as
follows.

Let’s assume that D(t) is zero-mean bipolar sinusoid:

D(t) = cos(2πf0t). (10)

The correlation value C(p; d) measured at pixel p can be represented as:

C(p; d) = s

∫
T

(R(t; d) + Pa)D(t) dt = s

∫
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∫
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(R(t; d) + Pa) (−D(t)) dt, (11)

where T⊕ and T	 mean the intervals of total integration time corresponding to the positive and the negative lobes of D(t).
When we take K = 4 intensity measurements Ck(d), k ∈ {1, . . . , 4}, we shift the phase of the modulation function M(t)
(instead of shifting the demodulation function D(t)) by ψk = π

2 (k − 1) , k ∈ {1, . . . , 4} for ease of computation:
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where Ck⊕ and Ck	 are the correlation values for T⊕ and T	, respectively. The depth value d can be recovered by:
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Using the error propagation rule, the depth standard deviation σ can be obtained by:
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With Var (Ck⊕) = Ck⊕ and Var (Ck	) = Ck	,
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4. Depth Standard Deviation of AC-orthogonal (ACO) approach
For an ideal ACO approach, all AC components from interfering sources are removed and only DC components are

captured at the sensor of the primary camera. Sum of interfering DC components from all interfering sources acts as additional
ambient light, thus can be added to ea in Eq. 1 to derived the depth standard deviation for ACO:
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Eq. 4 of the main manuscript

, (16)

where N is the number of interfering cameras, and ei = sαiPs is the average number of interfering photons (due to an
interfering source) incident on the pixel per unit time. Without loss of generality, we assume that ei is the same for all
interfering cameras.

5. Depth Standard Deviation of Stochastic Exposure Coding (SEC) approach
For the proposed stochastic exposure coding (SEC) approach, the effective integration time is determined by the prob-

ability pnoclsh that a given slot does not produce a clash. Thus, total integration time is reduced by pnoclsh on average.
Furthermore, the source strength should be amplified by the source peak power amplification A. Interfering DC components
are removed since clashed slots are thrown away in SEC. The depth standard deviation of SEC can be derived by putting
together all of these:
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Eq. 6 of the main manuscript

, (17)

where A = min (1/p,A0), A0 is allowable source peak power amplification, and pnoclsh = p (1− p)2N .

6. Optimal Slot ON Probability of SEC
The performance of SEC is determined by the slot on probability p. If p is too high or low, the effective integration time

is reduced. The optimal slot ON probability of SEC pSEC is defined as p minimizing σSEC and can be represented as:
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Eq. 7 of the main manuscript

. (18)

The derivation of Eq. 18 is as follows. From the definition of pSEC ,
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where A = min (1/p,A0). If 1/p ≤ A0, A = 1/p, and

pSEC = argmin
p

√
es
p + ea√

p (1− p)2N
=

1

A0
(20)

since σSEC is monotonically increasing over p ∈ [1/A0, 1]. Otherwise, A = A0, thus
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p
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From Eq. 20 and Eq. 21,
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. (22)
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Figure 1. Optimal slot ON probability for SEC approach. (a) The optimal slot ON probability for SEC pSEC is determined only by the
number of interfering cameras N when source peak power amplification is not allowed. (b) With peak power amplification, however, both
allowable peak power amplification A0 and N determines pSEC . If A0 ≥ 2N + 1, pSEC is determined by A0, otherwise, by N .

Figure 1 (a) and (b) show the inverse depth standard deviations σSEC−1 over p with different number of interfering cam-
eras N without source peak power amplification (A0 = 1) and with source peak power amplification (A0 = 5), respectively.
Without source peak power amplification, the optimal slot ON probability pSEC minimizing σSEC (maximizing σSEC−1)
is determined by N . When p > pSEC , the slot clash increases, the effective integration time without clash decreases, and
σSEC increases. When p < pSEC , the slot is more rarely sent, the effective integration time decreases, and σSEC increases.
When the number of interfering cameraN increases, pSEC decreases, and σSEC at pSEC increases. With source peak power
amplification, pSEC has two different forms according to the relationship between N and A0 (Eq. 18). If A0 ≥ 2N + 1,
pSEC is determined by A0, otherwise by N . es = ea = 1 × 106, T = 10ms, and f0 = 30MHz were used to create the
plots.

7. Depth Estimation Algorithm for SEC
First, each ON slot is tested if it is clashed or not (please refer to the next section for the clash check algorithm). The

clashed ON slot is discarded since it does not contain correct depth information. Second, if the slot is free from clash, the slot
depth value dm is estimated from the slot correlation (or intensity) values Cm,k, m ∈ {1, . . . ,Mnoclsh}, k ∈ {1, . . . ,K},
whereMnoclsh is the number of non-clashed ON slots, andK is the total number of captured intensity (or correlation) values.
With an assumption of sinusoid coding scheme, and K = 4:

dm =
c

4πf0
tan−1

(
Cm,4 − Cm,2
Cm,1 − Cm,3

)
, m ∈ {1, . . . ,Mnoclsh}. (23)

Next, repeat this procedure for all non-clashed ON slots, and estimate the frame depth value d by averaging all dms:

d =
1

Mnoclsh

Mnoclsh∑
m=1

dm, m ∈ {1, ...,Mnoclsh} , (24)

The depth estimation algorithm for SEC is summarized in Algorithm 1.

8. Slot Clash Check Algorithm for SEC
Slot clash check is very important since correct depth values cannot be recovered from the clashed slots due to systematic

errors. Slot clash check is performed based on the summation of the slot correlation values. For the m-th ON slot (m ∈
{1, . . . ,MON}):

om = Cm,1 + Cm,2 + Cm,3 + Cm,4. (25)

om is proportional to the total number of electrons generated at the sensor by all incoming light. This value is high if clash
happens, and low otherwise. We devise a simple threshold-based approach for clash check. By the central limit theorem, if
the number of photons or electrons is large enough, om is a random variable following a normal distribution whose standard
deviation σom =

√
E [om], where E [om] is the mean value of om. The stochastic upper and lower bounds of the value om



Algorithm 1: Depth estimation for the stochastic exposure coding approach
Input: Set of the correlation values of all ON slots within a frame, {(Cm,1, Cm,2, Cm,3, Cm,4)} (m ∈ {1, ...,MON}),

where MON is the total number of ON slots within the frame.
Output: Depth value for the frame, d.
dsum = 0;
for Each m ∈ {1, ...,MON} do

clashFound = checkClash(Cm,1, Cm,2, Cm,3, Cm,4);
(Algorithm 2)
if clashFound == FALSE; then

dm = estimateDepth(Cm,1, Cm,2, Cm,3, Cm,4); (Eq. 23)
dsum = dsum + dm;

end
end
d = dsum/Mnoclsh;

Algorithm 2: Slot clash check
Input: Correlation values of the m-th ON time slot, (Cm,1, Cm,2, Cm,3, Cm,4).
Output: Boolean variable, clashFound indicating if the slot clash happens or not.
om = Cm,1 + Cm,2 + Cm,3 + Cm,4; (Eq. 25)
if om > oclsh; then

clashFound = TRUE;
else

clashFound = FALSE;
end

can be approximated by E [om]±kσom . We will use E [om]+kσom as the threshold value oclsh to determine if clash happens
or not. If we define omin as:

omin = min om, m ∈ {1, ...,MON} , (26)

we can approximate omin as E [om] − kσom and the closed form solution for oclsh can be derived in terms of omin. Please
note that this approximation holds only when MON is large enough. The clashed slots with very small interference can be
falsely classified as non-clashed slots. However, since the falsely classified time slot is usually due to very small interference,
the depth error is still acceptable. This simple threshold-based algorithm works fast due to its closed form:

oclsh = om + k
√
om, (27)

where

om = omin +
k2

2
+

√
k2omin +

k4

4
. (28)

The slot clash check algorithm works well with k = 2 and is summarized in Algorithm 2.

9. Convergence of Required Source Peak Power Amplification for SEC
The required source peak power amplification A for SEC to perform better than ACO in terms of SNR can be estimated

from σSEC ≤ σACO:

1
√
pnoclsh

√
A+ ra
A

≤
√

1 + ra +Nri, (29)

where ra = ea/es and ri = ei/es are relative ambient light strength and relative interfering light source strength, respectively.
The required A increases with N , but converges in the end as stated in the following result:



Result 1. If the source peak power amplification of SEC is larger than
(
e+

√
e (e+ 2rari)

)
/ri, the depth standard devi-

ation of SEC is always lower than ACO regardless of the number of interfering cameras. For example, the required A ≈ 6.3
when ra = ri = 1.

The proof is as follows. If N is large enough, pSEC = 1/ (2N + 1), thus the required A can be represented as:

A =
1 +

√
1 + 4pnoclshra (1 + ra +Nri)

2pnoclsh (1 + ra +Nri)
. (30)

The convergent value of A can be found from:

lim
N→∞

A = lim
N→∞

1 +
√

1 + 4pnoclshra (1 + ra +Nri)

2pnoclsh (1 + ra +Nri)
. (31)

Using

lim
N→∞

pnoclsh (1 + ra +Nri) = lim
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(1 + ra +Nri)
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)
2 + 1
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)2N
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2e
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(32)

lim
N→∞

A =
e+

√
e (e+ 2rari)

ri
. (33)

Thus, if the source peak power is increased by more than this value, SEC always works better than ACO regardless of the
number of interfering cameras.

10. Required Number of Slots for SEC
For reliable depth estimation, the number of the non-clashed ON slots Mnoclsh should be non-zero. Correct depth es-

timation is impossible if there is no non-clashed ON slots in the extreme case. This requirement can be represented as
Mpnoclsh = Mnoclsh ≥ χ, where M is the total number of slots, and χ (χ ≥ 1) is the minimum number of non-clashed
ON slots for the desired performance. The closed form equation for M to satisfy Mpnoclsh ≥ χ with a certain success
probability psuc = p (Mnoclsh ≥ χ) can be derived.

If we define a Bernoulli random variable Xm ∼ B (1, pnoclsh) for the m-th time slot (m = {1, ...,M}), the number of
non-clashed ON slots Mnoclsh is a random variable represented by a summation of Xm:

Mnoclsh =

M∑
m=1

Xm. (34)

Mnoclsh follows a binomial distribution: Mnoclsh ∼ B (M,pnoclsh). For sufficiently large M , it is well known that the
binomial distribution is approximated well by the normal distribution:

B (M,pnoclsh) ≈ N (Mpnoclsh,Mpnoclsh (1− pnoclsh)) . (35)

Given χ (χ ≥ 1), the success probability psuc = p (Mnoclsh ≥ χ) can be approximated by the area under the normal distri-
bution curve from χ to∞. From the z-score of χ:

χ−Mpnoclsh√
Mpnoclsh (1− pnoclsh)

= z, (36)

the total number of time slots M can be derived as:

M =
z2pa + 2χpnoclsh +

√
z4p2a − 4p2noclshχ

2

2p2noclsh
, (37)

where pa = pnoclsh (1− pnoclsh). z is the function of the desired psuc and is easy to be found from the the standard normal
distribution table. Figure 2 shows the required number of slots M over the number of interfering cameras N at the different
allowable source peak power amplifications A0 and different probabilities of getting at least one non-clashed ON slots psuc.
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Figure 2. Required number of slots for SEC. The required number of slots M over the number of interfering cameras N are shown at the
different allowable source peak power amplifications A0 and different probabilities of getting at least one non-clashed ON slots psuc.

11. Convergence of Required Number of ON Slots for SEC
The number of ON slots MON =MpSEC for SEC increases with the number of interfering cameras N , but converges in

the end as stated in the following result:

Result 2. The required number of ON slots MON converges to e
(
z2/2 + 1− z

√
z2/4 + 1

)
regardless of the number of

interfering cameras, where z is the z-score value, and is a function of psuc. For example, when psuc = 0.9, the required
MON is upper bounded by 9.1.

This result can be proved as follows:

lim
N→∞

MON = lim
N→∞

MpSEC

= lim
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2
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+

√
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(
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(38)

Using

lim
N→∞

pSEC
pnoclsh

= lim
N→∞

(
1 +

1

2N

)2N

= e, (39)

lim
N→∞

p2SEC
pnoclsh

= 0, (40)

and
lim
N→∞

pSEC = 0, (41)

lim
N→∞

MON = e

(
z2

2
+ χ− z

√
z2

4
+ χ

)
. (42)

Thus, the number of ON slots MON is upper bounded.

12. Frame Rate of SEC
The proposed SEC approach requires dividing a frame into a large number of slots. However, the more pertinent factor

that may limit the frame-rate is the number of ON slots, which is typically low. For example, let the total number of slots be
100, and the slot ON probability be 0.2. While the sensor is inactive during OFF slots, each ON slot must have an integration-
readout-reset cycle. The reset time, minimum exposure time, and readout time of an off-the-shelf device are 16 µs, 21.3 µs,
and 815 µs, respectively [1]. Let the exposure time of each ON slot be 1ms, and OFF slot time be the same as minimum
exposure time. Then, the frame time is 20×(16 µs + 1000 µs + 815 µs)+80×21.3 µs = 39ms, which results in 25 frames/s



if 4 measurements are obtained simultaneously using the 4-tap pixel architecture. Although lower than what is achievable
with current coding approaches, this may be sufficient for dynamic scenes. For CMB, clash check is not needed and more
efficient frame structure is possible.

13. Depth Standard Deviation of Multi-Layer Coding (CMB) approach
To derive the depth standard deviation of the Multi-Layer Coding (CMB) approach by generalizing Eq. 8, we need to

consider the following things: The total integration time is reduced by slot ON probability p. The primary and interfering
source strengths are amplified by the source peak power amplificationA. Average interfering DC component should be added
to the ambient strength. It is straightforward to derive the depth standard deviation of SEC by putting together all of these:

σCMB =
c

2
√
2πf0

√
Tp

√
Aes + ea +NpAei

Aes︸ ︷︷ ︸
Eq. 9 of the main manuscript

, (43)

where A = min (1/p,A0).

14. Optimal Slot ON Probability of CMB
The optimal slot ON probability of CMB is defined as:

pCMB = argmin
p
σCMB = argmin

p

c

2
√
2πf0

√
Tp

√
Aes + ea +NpAei

Aes
, (44)

where A = min (1/p,A0). If 1/p ≤ A0, A = 1/p, and

pCMB = argmin
p
σCMB =

1

A0
(45)

since σCMB is monotonically increasing over p ∈ [1/A0, 1]. Otherwise, A = A0, and

pCMB = argmin
p
σCMB =

1

A0
(46)

since σCMB is monotonically decreasing over p ∈ (0, 1/A0]. From Eq. 45 and Eq. 46,

pCMB =
1

A0
. (47)

Therefore, the optimal slot ON probability of CMB pCMB doesn’t depend on the number of interfering cameras N .

15. Depth Estimation for CMB
In CMB, slot clash check is not necessary, and the depth value can be estimated from Eq. 6 (if sinusoid coding scheme is

assumed) using the summed correlation values from all ON slots:

d =
c

4πf0
tan−1

(∑MON

m=1 Cm,4 −
∑MON

m=1 Cm,2∑MON

m=1 Cm,1 −
∑MON

m=1 Cm,3

)
, (48)

where m ∈ {1, . . . ,MON} is the ON slot index.

16. Comparisons with the Same Peak Power
If peak power amplification is 1, and the integration time is kept constant, the optimal ON probability become 1, i.e.,

pCMB = 1. In this case, CMB becomes the same as existing ACO approaches, with the same performance. The more
interesting comparison is when the integration time is allowed to be increased. In this case, we can use lower ON probabilities
to avoid clashes. Specifically, we set pCMB = pSEC = 1/ (2N + 1). To keep the total signal constant, we increase the total
integration time by 2N+1. Figure 3 shows the comparisons between approaches with and without peak power amplification.
The performance of the proposed approaches with A0 = 1 is lower than that with A0 = 8, especially for small Ns. However,
the performance gain increases with N due to reduced clash probabilities.
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Figure 4. Autocorrelation of an m-sequence waveform. The autocorrelaiton of an m-sequence waveform is a periodic triangular function.

17. Depth Estimation for PN Sequence (PN) Approach
We used a PN sequence approach (PN) [2, 3] for comparison with our approaches in simulations. We modified the

original depth estimation algorithm [2] to accommodate unipolar demodulation functions and four correlation values for fair
comparison with other approaches. For the PN approach, modulation function M(t) and demodulation function D(t) are
defined as:

M(t) =
2n

n+ 1
H(t), (49)

and
D(t) = 2H(t), (50)

respectively. H(t) is a unipolar m-sequence (maximum length sequence) (0 ≤ H(t) ≤ 1), 2n/(n + 1) is a scale factor to
make 1

T0

∫
T0
M(t)dt = 1, and n is the number of chips (or bits) during one period of m-sequence waveform. The correlation

or intensity value can be represented as:

C(τ) =
4esn

n+ 1

∫
T

H(t− τ)H(t)dt+ eaT
n+ 1

n
, (51)

where τ = 2d/c is the round-trip time of the light from the source to the sensor. The autocorrelation of m-sequence waveform
Q (τ) =

∫
T
H(t− τ)H(t)dt has a periodic triangular function (Figure 4). We take four correlation values as follows:

C1 = C(τ) = 2ans

(
T

Tc

n+ 1

4n
(−τ) + T

n+ 1

2n

)
+ naT

n+ 1

n
, (52)

C2 = C(τ − Tc) = 2ans

(
T

Tc

n+ 1

4n
(τ − Tc) + T

n+ 1

2n

)
+ naT

n+ 1

n
, (53)

C3 = C(τ − 2Tc) = 2ansT
n+ 1

4n
+ naT

n+ 1

n
, (54)

C4 = C(τ − 3Tc) = 2ansT
n+ 1

4n
+ naT

n+ 1

n
, (55)
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Figure 5. Examples of random binary sequences. Examples of random binary sequences at different slot ON probabilities are shown.

where a = 2n/ (n+ 1), and Tc = T/ (n). The depth value d can be recovered by:

d =
cTc (C2 − C4)

2 (C1 + C2 − C3 − C4)
. (56)

18. Random Binary Sequences for activation of C-ToF Cameras
Each slot is activated or deactivated by random binary sequence during the integration time in our approaches. The value

of the binary sequence for each slot is 1 with an optimal slot ON probability. Figure 5 shows examples of random binary
sequences at different slot ON probabilities p when the total number of slots is 200.
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